
Agilent Technologies

Agilent N7744A / N7745A
Multiport Optical Power Meter

LXI Compliant Power Meters

Programming Guide

Notices
© Agilent Technologies, Inc. 2009

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number

N7744-90C01

Edition

Second edition, February 2009

Printed in Germany

Agilent Technologies Deutschland GmbH

Herrenberger Str. 130
71034 Böblingen, Germany

Warranty

This Agilent Technologies instrument prod-
uct is warranted against defects in material
and workmanship for a period of one year
from date of shipment. During the warranty
period, Agilent will, at its option, either
repair or replace products that prove to be
defective.
For warranty service or repair, this product
must be returned to a service facility desig-
nated by Agilent. Buyer shall prepay ship-
ping charges to Agilent and Agilent shall
pay shipping charges to return the product
to Buyer. However, Buyer shall pay all ship-
ping charges, duties, and taxes for products
returned to Agilent from another country.

Agilent warrants that its software and firm-
ware designated by Agilent for use with an
instrument will execute its programming
instructions when properly installed on that
instrument. Agilent does not warrant that
the operation of the instrument, software,
or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to
defects resulting from improper or inade-
quate maintenance by Buyer, Buyer-sup-
plied software or interfacing, unauthorized
modification or misuse, operation outside

of the environmental specifications for the
product, or improper site preparation or
maintenance.
No other warranty is expressed or implied.
Agilent Technologies specifically disclaims
the implied warranties of Merchantability
and Fitness for a Particular Purpose.

Technology Licenses

The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of
a U.S. Government prime contract or sub-
contract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S. Gov-
ernment will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Govern-
ment users will receive no greater than
Limited Rights as defined in FAR 52.227-14
(June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any
technical data.

Exclusive Remedies

The remedies provided herein are Buyer's
sole and exclusive remedies. Agilent Tech-
nologies shall not be liable for any direct,
indirect, special, incidental, or consequen-
tial damages whether based on contract,
tort, or any other legal theory.

Assistance

Product maintenance agreements and
other customer assistance agreements are
available for Agilent Technologies prod-
ucts. For any assistance contact your near-
est Agilent Technologies Sales and Service
Office.

Certification

Agilent Technologies Inc. certifies that this
product met its published specifications at
the time of shipment from the factory.
Agilent Technologies further certifies that
its calibration measurements are traceable
to the United States National Institute of
Standards and Technology, NIST (formerly
the United States National Bureau of Stan-
dards, NBS) to the extent allowed by the
Institutes’s calibration facility, and to the
calibration facilities of other International
Standards Organization members.

ISO 9001 Certification

Produced to ISO 9001 international quality
system standard as part of our objective of
continually increasing customer satisfac-
tion through improved process control.

Safety Notices

CAUTION

A CAUTION notice calls attention
to an operating procedure, practice,
or the like that, if not correctly per-
formed or adhered to, could result
in damage to the product or loss of
important data. Do not proceed
beyond a CAUTION notice until the
indicated conditions are fully
understood and met.

WARNING

A WARNING notice calls attention
to an operating procedure, prac-
tice, or the like that, if not cor-
rectly performed or adhered to,
could result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indi-
cated conditions are fully under-
stood and met.

Multi-Port Power Meter Programming Guide 3

Warnings and Notices

WARNING

To avoid the possibility of injury or death, you must observe the following
precautions before switching on the instrument.
Insert the power cable plug only into a socket outlet provided with a
protective earth contact. Do not negate this protective action by the
using an extension cord without a protective conductor.

WARNING

Never look directly into the end of a fiber or a connector, unless you are
absolutely certain that there is no signal in the fiber.

4 Multi-Port Power Meter Programming Guide

In this Manual

This manual contains information about SCPI commands which
can be used to program the following instruments:

• Agilent N7744A / N7745A Multiport Optical Power Meter

These instruments can also be programmed via the IVI drivers
(IVI-COM, IVI-C), available on

http://www.agilent.com/find/ivi-com

Conventions used in this Manual

• All commands and typed text is written in Courier font, for
example INIT[:IMM].

• SCPI commands are written in mixed case: text that you
MUST print is written in capitals; text which is helpful but
nor necessary is written in lower case.
So, the command INITiate[:IMMediate] can be entered either as
init[:imm], or as initiate[:immediate]. It does not matter whether
you enter text using capitals or lower-case letters.

• SCPI commands often contain extra arguments in square
brackets. These arguments may be helpful, but they need not
be entered.
So, the command INITiate[:IMMediate] can be entered as init or
initiate:imm.

• A SCPI command which can be either a command or a query
is appended with the text /?.
So, DISPlay:ENABle/? refers to both the command DISPlay:ENABle
and the query DISPlay:ENABle?.

Related Manuals

You can find more information about the instrument covered by
this manual in the following manuals:

• Agilent N7744A / N7745A Multiport Optical Power Meter
User’s Guide.

NOTE Refer to the books listed in “Introduction to Programming" on
page 7 for additional information about the General Purpose
Interface Bus, GPIB.

Multi-Port Power Meter Programming Guide 5

Contents

1 Introduction to Programming

GPIB Interface 8

Setting the GPIB Address 9

Using the Web-Enabled Instrument Interface 10

Browser Configuration 10

Message Queues 12

How the Input Queue Works 12

The Output Queue 12

The Error Queue 13

Programming and Syntax Diagram Conventions 14

Short Form and Long Form 14

Command and Query Syntax 15

Common Commands 18

Common Command Summary 18

Common Status Information 18

The Status Model 20

Status Registers 20

Status System 22

Annotations 23

Status Command Summary 25

Other Commands 25

2 Specific Commands

Specific Command Summary 28

3 Instrument Setup and Status

IEEE-Common Commands 34

Status Reporting – The STATus Subsystem 40

Interface/Instrument Behaviour Settings – The SYSTem Subsystem 47

:SYSTem:COMMunicate:ETHernet subtree 49

Handling Measurement Settings - The :CONFigure:MEASurement:SETTing
subtree 56

6 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

Root Layer Command 60

Measurement Functions – The FETCh, INITiate, READ and SENSe
Subsystems 63

Using data buffers for simultaneous measurement and upload 70

Triggering - The TRIGger Subsystem 82

5 VISA Programming Examples

How to Use VISA Calls 86

How to Measure Power using FETCh and READ 88

How to Log Results 91

6 The Agilent 816x VXIplug&play Instrument Driver

Installing the Agilent 816x Instrument Driver 96

Using Visual Programming Environments 100

Getting Started with Agilent VEE 100

Getting Started with LabView 102

Getting Started with LabWindows 105

Features of the Agilent 816x Instrument Driver 106

Directory Structure 107

Opening an Instrument Session 108

Closing an Instrument Session 109

VISA Data Types and Selected Constant Definitions 110

Error Handling 111

Introduction to Programming 113

Example Programs 113

VISA-Specific Information 113

Development Environments 113

Online Information 115

Lambda Scan Applications 116

How to Perform a Multi-Frame Lambda Scan Application 118

7 Error Codes

GPIB Error Strings 124

7

Agilent N7744A / N7745A Multiport Power Meter
Programming Guide

Agilent Technologies

1
Introduction to Programming

This chapter gives general information on how to control your instrument
remotely.

Descriptions for the actual commands for the instruments are given in the
following chapters. The information in these chapters is specific to the
Agilent N7744A / N7745A Multiport Power Meter and assumes that you
are already familiar with programming the GPIB.

GPIB Interface 8

Setting the GPIB Address 9

Message Queues 12

How the Input Queue Works 12

The Output Queue 12

The Error Queue 13

Programming and Syntax Diagram Conventions 14

Short Form and Long Form 14

Command and Query Syntax 15

Common Commands 18

Common Command Summary 18

Common Status Information 18

The Status Model 20

Status Registers 20

Status System 22

Annotations 23

Status Command Summary 25

Other Commands 25

8 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

GPIB Interface

The interface used by your instrument is the GPIB (General
Purpose Interface Bus).

GPIB is the interface used for communication between a
controller and an external device, such as the tunable laser
source. The GPIB conforms to IEEE standard 488-1978, ANSI
standard MC 1.1 and IEC recommendation 625-1.

If you are not familiar with the GPIB, then refer to the following
books:

• The International Institute of Electrical and Electronics
Engineers. IEEE Standard 488.1-1987, IEEE Standard
Digital Interface for Programmable Instrumentation. New
York, NY, 1987

• The International Institute of Electrical and Electronics
Engineers. IEEE Standard 488.2-1987, IEEE Standard
Codes, Formats, Protocols and Common Commands For Use
with ANSI/IEEE Std 488.1-1987. New York, NY, 1987

To obtain a copy of either of these last two documents, write to:

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York, NY 10017

USA.

In addition, the commands not from the IEEE-488.2 standard,
are defined according to the Standard Commands for
Programmable Instruments (SCPI).

For information about SCPI, and SCPI programming
techniques, please refer to:

• The SCPI Consortium: Standard Commands for
Programmable Instruments. To obtain a copy of this
manual, contact the following address:

SCPI Consortium Office

Bode Enterprise

2515 Camino del Rio South, Suite 340

San Diego, CA, 92108

USA

Web: http://www.scpiconsortium.org

The interface of the Agilent N7744A / N7745A Multiport Power
Meter to the GPIB is defined by the IEEE Standards 488.1 and
488.2.

http://www.scpiconsortium.org

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 9

Table 1 shows the interface functional subset that the
instruments implement.

Setting the GPIB Address

There are two ways to set the GPIB address:

• You can set the GPIB address by using the command
“:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess" on page 49.

• You can set the GPIB address from the web itnerface. See
your instrument’s User’s Guide for more information.

The default GPIB address is 20.

Table 1 GPIB Capabilities

Mnemonic Function

SH1 Complete source handshake capability

AH1 Complete acceptor handshake capability

T6 Basic talker; serial poll; no talk only mode; unaddressed to talk
if addressed to listen

L4 Basic listener; no listen only mode; unaddressed to listen if
addressed to talk

SR0 No service request capability

RL1 Complete remote/local capability

PP0 No parallel poll capability

DC1 Complete device clear capability

DT0 No device trigger capability

C0 No controller capability.

NOTE GPIB address 21 is often applied to the GPIB controller. If so, 21 cannot be
used as an instrument address.

10 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

Using the Web-Enabled Instrument Interface

The LAN connection between the PC and the Agilent N7744A /
N7745A provides access to the instrument through the
instrument’s Web-enabled interface. This is the easiest way to
program the Agilent N7744A / N7745A as no additional IO
drivers are required.

To use the Web-enabled interface:

1 Connect a LAN cable (yellow crossover or standard) between
your PC and the Agilent N7744A / N7745A. The Web-enabled
interface is not available over GPIB or USB.

2 If necessary, turn on the Agilent N7744A / N7745A. Following
the power-on sequence note the IP address displayed on the
Agilent N7744A / N7745A front panel.

3 Open the Internet browser on your PC. In the browser ‘Address’
window, type “http://” followed by the IP address of the Agilent
N7744A / N7745A.

The Web interface ‘Welcome Page’ appears as shown in
Figure 1.

Browser Configuration

The Web-enabled interface is activated from the PC’s Internet browser.
In some network configurations, however, a proxy server may prevent
access to the instrument (i.e. “page cannot be displayed”). In this
situation, the proxy must be configured from the browser such that
the proxy is not used for (IP) addresses within the range of those that
can be assigned to the Agilent N7744A / N7745A.

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 11

Figure 1 The N7744A/N7745A Web-Enabled Interface ‘Welcome
Page’.

NOTE Selecting “Help with this Page” on any Web interface window provides
definitions and detailed information on the use of that window.

NOTE For ease in (Internet) browser navigation when controlling multiple
instruments, open a separate browser session for each Web-enabled
instrument.

12 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

Message Queues

The instrument exchanges messages using an input and an
output queue. Error messages are kept in a separate error
queue.

How the Input Queue Works

The input queue is a FIFO queue (first-in first-out). Incoming
bytes are stored in the input queue as follows:

1 Receiving a byte:

• Clears the output queue.

• Clears Bit 7 (MSB).

2 No modification is made inside strings or binary blocks.
Outside strings and binary blocks, the following
modifications are made:

• Lower-case characters are converted to upper-case.

• The characters 0016 to 0916 and 0B16 to 1F16 are
converted to spaces (2016).

• Two or more blanks are truncated to one.

3 An EOI (End Or Identify) sent with any character is put into
the input queue as the character followed by a line feed (LF,
0A16). If EOI is sent with a LF, only one LF is put into the
input queue.

4 The parser starts if the LF character is received or if the
input queue is full.

Clearing the Input Queue

Switching the power off, or sending a Device Interface Clear
signal, causes commands that are in the input queue, but have
not been executed to be lost.

The Output Queue

The output queue contains responses to query messages. The
instrument transmits any data from the output queue when a
controller addresses the instrument as a talker.

Each response message ends with a carriage return (CR, 0D16)
and a LF (0A16), with EOI=TRUE. If no query is received, or if
the query has an error, the output queue remains empty.

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 13

The Message Available bit (MAV, bit 4) is set in the Status Byte
register whenever there is data in the output queue.

The Error Queue

The error queue is 30 errors long. It is a FIFO queue (first-in
first-out). That is, the first error read is the oldest error to have
occurred. For example:

1 If no error has occurred, the error queue contains:
+ 0, "No error"

2 After a command such as wav:pow, the error queue now
contains:
+ 0, "No error"

-113, "Undefined header"

3 If the command is immediately repeated, the error queue
now contains:
+ 0, "No error"

-113, "Undefined header"

-113, "Undefined header"

If more than 29 errors are put into the queue, the message:

-350, "Queue overflow"

is placed as the last message in the queue.

14 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

Programming and Syntax Diagram Conventions

A program message is a message containing commands or
queries that you send to the instruments. The following are a
few points about program messages:

• You can use either upper-case or lower-case characters.

• You can send several commands in a single message. Each
command must be separated from the next one by a
semicolon (;).

• A command message is ended by a line feed character (LF) or
<CR><LF>.

• You can use any valid number/unit combination.

In other words, 1500NM, 1.5UM and 1.5E-6M are all equivalent.

If you do not specify a unit, then the default unit is assumed.
The default unit for the commands are given with command
description in the next chapter.

Short Form and Long Form

The instrument accepts messages in short or long forms.

For example, the message

:STATUS:OPERATION:ENABLE 768

is in long form.

The short form of this message is

:STAT:OPER:ENAB 768

In this manual, the messages are written in a combination of
upper and lower case. Upper case characters are used for the
short form of the message.

For example, the above command would be written

:STATus:OPERation:ENABle

The first colon can be left out for the first command or query in
your message. That is, the example given above could also be
sent as

STAT:OPER:ENAB 768

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 15

Command and Query Syntax

All characters not between angled brackets must be sent exactly
as shown.

The characters between angled brackets (<...>) indicate the kind
of data that you should send, or that you get in a response. You
do not type the angled brackets in the actual message.

Descriptions of these items follow the syntax description. The
following types of data are most commonly used:

Other kinds of data are described as required.

The characters between square brackets ([...]) show optional
information that you can include with the message.

The bar (|) shows an either-or choice of data, for example, a|b
means either a or b, but not both simultaneously.

Extra spaces are ignored, so spaces can be inserted to improve
readability.

Units

Where units are given with a command, usually only the base
units are specified. The full sets of units are given in the table
below.

string is ascii data. A string is contained between double quotes ("...") or
single quotes (‘...’).

value is numeric data in integer (12), decimal (34.5) or exponential format
(67.8E-9).

wsp is a white space.

Table 2 Units and allowed Mnemonics

Unit Default Allowed Mnemonics

meters M PM, NM, UM, MM, M

decibel DB MDB, DB

second S NS, US, MS, S

decibel/1mW DBM MDBM, DBM

Hertz HZ HZ, KHZ, MHZ, GHZ, THZ

Watt Watt PW, NW, UW, MW, Watt

meters per second M/S NM/S, UM/S, MM/S, M/S

16 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

Data Types

With the commands you give parameters to the instrument and
receive response values from the instrument. Unless explicitly
specified these data are given in ASCII format. The following
types of data are used:

• Boolean data may only have the values 0 or 1.

• Integer range is given for each individual command.

• Float variables may be given in decimal or exponential
writing (0.123 or 123E-3).
All Float values conform to the 32 bit IEEE Standard, that is,
all Float values are returned as 32-bit real values.

• A string is contained between double quotes ("...") or single
quotes (‘...’). When the instrument returns a string, it is
always included in " " and terminated by <END>.

• When a register value is given or returned (for example
*ESE), the decimal values for the single bits are added. For
example, a value of nine means that bit 0 and bit 3 are set.

• Larger blocks of data are given as Binary Blocks, preceded
by “#<H><Len><Block>”, terminated by <END>; <H>
represents the number of digits, <Len> represents the
number of bytes, and <Block> is the data block. For example,
for a Binary Block with 1 digit and 6 bytes this is:
#16TRACES<END>.

Slot and Channel Numbers

Each module is identified by a slot number and a channel
number. For commands that require you to specify a channel,
the slot number is represented by [n] in a command and the
channel number is represented by [m].

The slot number represents the module’s position in the
mainframe. These are:

• from 1 to 4 for the Agilent N7744A

• from 1 to 8 for the Agilent N7745A,

These numbers are displayed on the front panel beside each
module slot.

Channel numbers are not used and are optional in all
commands for the Multiport Power Meter. They are accepted to
ensure compatibility with the Agilent 816x power meters.

For example, if you want to query slot 1 with the command,
:SENSe[n]:[CHANnel[m]]:POWer:WAVelength?, you should send
the command:

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 17

:sens1:pow:wav?

NOTE If you do not specify a slot or channel number, the lowest possible number
is used as the default value. This means:

• Slot 1.

• Channel 1.

18 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

Common Commands

The IEEE 488.2 standard has a list of reserved commands,
called common commands. Some of these commands must be
implemented by any instrument using the standard, others are
optional.

Your instrument implements all the necessary commands, and
some optional ones. This section describes the implemented
commands.

Common Command Summary

Table 3 gives a summary of the common commands.

Common Status Information

There are three registers for the status information. Two of
these are status-registers and one is an enable-registers. These
registers conform to the IEEE Standard 488.2-1987. You can
find further descriptions of these registers under *ESE, *ESR?,
and *STB?.

Table 3 Common Command Summary

Command Parameter Function Page

*CLS Clear Status Command page 34

*ESE Standard Event Status Enable Command page 34

*ESE? Standard Event Status Enable Query page 35

*ESR? Standard Event Status Register Query page 35

*IDN? Identification Query page 35

*OPC Operation Complete Command page 36

*OPC? Operation Complete Query page 36

*OPT? Options Query page 37

*RST Reset Command page 37

*STB? Read Status Byte Query page 37

*TST? Self Test Query page 38

*WAI Wait Command page 39

NOTE These commands are described in more detail in “IEEE-Common
Commands" on page 34.

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 19

Figure 2 shows how the Standard Event Status Enable Mask
(SESEM) and the Standard Event Status Register (SESR)
determine the Event Status Bit (ESB) of the Status Byte.

Figure 2 The Event Status Bit

The SESR contains the information about events that are not
slot specific. For details of the function of each bit of the SESR,
see “Standard Event Status Register” on page 23.

The SESEM allows you to choose the event that may affect the
ESB of the Status Byte. If you set a bit of the SESEM to zero, the
corresponding event cannot affect the ESB. The default is for all
the bits of the SESEM to be set to 0.

The questionable and operation status systems set the
Operational Status Bit (OSB) and the Questionable Status Bit
(QSB). These status systems are described in “The Status
Model” on page 20 and “Status Reporting – The STATus
Subsystem" on page 40.

01234567

*STB? returns the Status Byte Register

Status

OSB ESB QSB

*ESR? returns the Standard Event Status Register

0 01

01234567Event
10 0000Status

Register

01234567Event

11 1111Status
Enable
Mask

*ESE sets the Standard Event Status Enable Mask

&

&

&

&

&

&

&

&

O
R

Byte

All bits shown as are unused

0

MAV

NOTE Unused bits in any of the registers change to 0 when you read them.

20 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

The Status Model

Status Registers

Each node of the status circuitry has three registers:

• A condition register (CONDition), which contains the
current status. This register is updated continuously. It is not
changed by having its contents read.

• The event register (EVENt), which contains details of any
positive transitions in the corresponding condition register,
that is, when a bit changes from 0 → 1. The contents of this
register are cleared when it is read. The contents of any
higher-level registers are affected with regard to the
appropriate bit.

• The enable register (ENABle), which enables changes in the
event register to affect the next stage of registers.

The structures of the Operational and Questionable Status
Systems are similar. Figure 4 describe how the Questionable
Status Bit (QSB) and the Operational Status Bit (OSB) of the
Status Byte Register are determined.

NOTE The event register is the only kind of register that can affect the next stage
of registers.

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 21

Figure 3 The Registers and Filters for a Node

The Operational/Questionable Slot Status Event Register
(OSSER/QSSER) contains the status of a particular module slot.
A bit changes from 0 → 1 when an event occurs, for example,
when a laser is switched on. For details of the function of each
bit of these registers, see “Operation/Questionable Status
Summary Register” on page 23.

The Operational/Questionable Slot Enable Status Mask
(OSESM/QSESM) allows you to choose the events for each
module slot that may affect the Operational/Questionable
Status Event Register (see below). If you set a bit of the
OSESM/QSESM to zero, the occurence of the corresponding
event for this particular module slot cannot affect the
Operational/Questionable Status Event Register. The default is
for all the bits of the OSESM/QSESM to be set to 0.

The Operational/Questionable Status Event Summary Register
(OSESR/QSESR) summarizes the status of every module slot of
your instrument. If, for any slot, any bit of the QSSER goes from
0 → 1 AND the corresponding bit of the QSSEM is 1 at the same
time, the QSESR bit representing that slot is set to 1.

The Operational/Questionable Status Enable Summary Mask
(OSESM/QSESM) allows you to choose the module slots that
may affect the OSB/QSB of the Status Byte. If any bit of the
QSESR goes from 0 → 1 AND the corresponding bit of the
QSESM is 1 at the same time, the QSB of the Status Byte is set to

Enable Registers

To the
Condition Register
of the Next Node

Event Registers

Condition Registers

OR

1 1 1 1 1

A positive transition in the condition

causes the corresponding bit of the

to change from 0 → 1.
corresponding event register

register, when a bit changes from 0 → 1,

22 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

1. If you set a bit of the OSESM/QSESM to zero, the
corresponding module slot cannot affect the OSB/QSB. The
default is for all the bits of the OSESM/QSESM to be set to 0.

The Operational/Questionable Status Enable Summary Mask for
the Agilent N7744A / N7745A Multiport Power Meter consists of
one level. These are described in “Status System” on page 22.

Status System

The status system for the Agilent N7744A / N7745A Multiport
Power Meter returns the status of 4 and 8 module slots
respectively. The Operational/Questionable Status Summary
Registers consist of one level and are described by Figure 4. Any
commands that require LEVel1 do not apply to these
mainframes.

Figure 4 The Operational/Questionable Status System

Operational/Questionable Status

Operational/Questionable Status

Operational/Questionable Status

Condition Summary Register

Event Summary Register

Enable Summary Mask
Register

Status ByteStatus Byte Register

Status Summary

to next

Operational/Questionable

Operational/Questionable

Operational/Questionable

Slot Status Condition

Slot Status Event

Slot Status Enable Mask

&

&
&

& OR

level

to next

for a positive

&

&
&

& OR

level

Slot 1

transition

for a positive
transition

Register

Register

Register

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 23

Annotations

Status Byte Register

• Bit 3, the QSB, is built from the questionable event status
register and its enable mask.

• Bit 4, the MAV, is set if the message output queue is not
empty.

• Bit 5, the ESB, is built from the SESR and its SESEM.

• Bit 7, the OSB, is built from the operation event status
register and its enable mask.

• All other bits are unused, and therefore set to 0.

Standard Event Status Register

• Bit 0 is set if an operation complete event has been received
since the last call to *ESR?.

• Bit 1 is always 0 (no service request).

• Bit 2 is set if a query error has been detected.

• Bit 3 is set if a device dependent error has been detected.

• Bit 4 is set if an execution error has been detected.

• Bit 5 is set if a command error has been detected.

• Bit 6 is always 0 (no service request).

• Bit 7 is set for the first call of *ESR? after Power On.

Operation/Questionable Status Summary

• The Operation/Questionable Status Summary consist of a
condition and an event register.

• A "rising" bit in the condition register is copied to the event
register.

• A "falling" bit in the condition register has no effect on the
event register.

• Reading the condition register is non-destructive.

• Reading the event register is destructive.

• A summary of the event register and its enable mask is set in
the status byte.

Operation/Questionable Status Summary Register

• Bits 0 to 4 are built from the OSSER/QSSER and the
OSSEM/QSSEM.

24 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

• A summary of the event register, the condition register and
the enable mask is set in the status byte.

Operation/Questionable Slot Status

• The Operation/Questionable Slot Status consist of a
condition and an event register.

• A "rising" bit in the condition register is copied to the event
register.

• A "falling" bit in the condition register has no effect on the
event register.

• Reading the condition register is non-destructive.

• Reading the event register is destructive.

• A summary of the event register, the condition register and
the enable mask is set in the status byte.

Operation Slot Status Register

• Bit 3 is set if Power Meter zeroing.

• All other bits are unused, and therefore set to 0.

Questionable Slot Status Register

• Bit 0 is set if excessive averaging time is set for any Power
Meter.

• Bit 1 is set if the last Power Meter zeroing failed.

• Bit 2 is set if temperature is out of range.

• Bit 5 is set if the module is out of specifications.

• All other bits are unused, and therefore set to 0.

Introduction to Programming 1

Multi-Port Power Meter Programming Guide 25

Status Command Summary

Other Commands

*STB? returns status byte, value 0 .. +255

*ESE sets the standard event status enable mask, parameter 0 .. +255

*ESE? returns SESE, value 0 .. +255

*ESR? returns the standard event status register, value 0 .. +255

*OPC parses all program message units in the message queue, and prevents
the instrument from executing any further commands until all pending
commands are completed.

*OPC? returns 1 if all operations (scan trace printout, measurement) are
completed. Otherwise it returns 0.

*CLS clears the status byte and SESR, and removes any entries from the
error queue.

*RST clears the error queue, loads the default setting, and restarts
communication.
NOTE: *RST does NOT touch the STB or SESR. A running measurement
is stopped.

*TST? initiates an instrument selftest and returns the results as a 32 bit
LONG.

*OPT? returns the installed modules and the slots these modules are installed
in:
For example, *OPT? → ???, ,
A modules is installed in slot 0. Slot 1 is empty.

*WAI prevents the instrument from executing any further commands until the
current command has finished executing. All pending operations are
completed during the wait period.

*IDN? identifies the instrument; returns the manufacturer, instrument model
number, serial number, and firmware revision level.

26 Multi-Port Power Meter Programming Guide

1 Introduction to Programming

27

Agilent N7744A / N7745A Multiport Power Meter
Programming Guide

Agilent Technologies

2
Specific Commands

This chapter lists all the instrument specific commands relating to the
Agilent N7744A / N7745A Multiport Power Meter with a single-line
description.

Each of these summaries contains a page reference for more detailed
information about the particular command later in this manual.

Specific Command Summary 28

28 Multi-Port Power Meter Programming Guide

2 Specific Commands

Specific Command Summary

The commands are ordered in a command tree. Every command
belongs to a node in this tree.

The root nodes are also called the subsystems. A subsystem
contains all commands belonging to a specific topic. In a
subsystem there may be further subnodes.

All the nodes have to be given with a command. For example in
the command :init:cont

• INITiate is the subsystem containing all commands and queries
concerned with setting up the power meter,

• CONTinuous is the command setting a continuous
measurement.

Table 1 gives an overview of the command tree. You see the
nodes, the subnodes, and the included commands.

NOTE If a command and a query are both available, the command ends /?.
So, :init:cont/? means that init:cont and init:cont? are both available.

Table 1 Specific Command Summary

Command Description Page

:CONFigure:MEASurement:SETTing

:ACTual? Get the index of the setting currently being used. page 56

:CANCel Discard all the changes to the setting since the last save or recall page 56

:ERASe Erase a setting from memory. page 56

:NUMBer? Get the number of settings. page 57

:PRESet Resets the setting values in the working memory page 57

:RECall Recall a setting from FLASH memory. page 57

:SAVE Save the current setting to FLASH memory. page 57

:FETCh[n][:CHANnel[m]][:SCALar]

:POWer[:DC]? Returns the most recent power value from a sensor. page 63

:POWer[:DC]:ALL? Returns the most recent power values from all the sensors. page 63

:POWer[:DC]:ALL:CSV? Returns a string of the most recent power values from all the
sensors in comma separated format.

page 63

:INITiate[n]:[CHANnel[m]]

[:IMMediate] Starts a measurement. page 64

:CONTinuous/? Starts or Queries a single/continuous measurement. page 65

Specific Commands 2

Multi-Port Power Meter Programming Guide 29

:READ[n][:CHANnel[m]][:SCALar]

:POWer[:DC]? Returns a power value from a sensor. page 63

:POWer[:DC]:ALL? Returns the power values from all the sensors. page 65

:SENSe[n][:CHANnel[m]]:CORRection

[:LOSS][:INPut][:MAGNitude]/? Sets or returns the value of correction data for a sensor. page 66

:COLLECT:ZERO Executes a zero calibration of a sensor module. page 66

:COLLECT:ZERO? Returns the current zero state of a sensor module. page 67

:COLLECT:ZERO:ALL/? Executes a zero calibration of all sensor modules, or returns the
status of the most recent zero calibration of all sensor modules.

page 67

:SENSe[n][:CHANnel[m]]:FUNCtion

:LOOP/? Sets or returns the number of logging loops. page 72

:PARameter:LOGGing/? Sets or returns the number of samples and the averaging time,
tavg, for logging.

page 68

:PARameter:MINMax/? Sets or returns the minmax mode and the window size. page 69

:PARameter:STABility/? Sets or returns the total time, delay time and the averaging time,
tavg, for stability.

page 70

:RESult? Returns the data array of the last function. page 73

:RESult:BUFA? Returns the data array of the last data acquisition function in
Buffer A.

page 73

:RESult:BUFB? Returns the data array of the last data acquisition function in
Buffer B.

page 74

:RESult:INDex? Returns the number of logging loops that have already finished. page 73

:STATe/? Enables/disables the function mode or returns whether the
function mode is enabled.

page 74

:SENSe[n][:CHANnel[m]]:POWer

:ATIMe/? Sets or returns the average time of a sensor. page 75

:GAIN:AUTO/? Sets or returns the auto gain setting of a sensor, which optimizes
the dynamic or transient response.

page 77

:RANGe:AUTO/? Sets or returns the range of a sensor to produce the most
dynamic range without overloading.

page 75

:RANGe[:UPPer]/? Sets or returns the most positive signal entry expected for a
sensor.

page 77

:REFerence/? Sets or returns the reference level of a sensor. page 78

:UNIT/? Sets or returns the units used for absolute readings on a sensor. page 80

:UNIT:ALL:CSV? Returns the units from all the ports of the instrument.

:WAVelength/? Sets or returns the wavelength for a sensor. page 80

Table 1 Specific Command Summary (continued)

Command Description Page

30 Multi-Port Power Meter Programming Guide

2 Specific Commands

:SENSe[n][:CHANnel[m]]:POWer:Reference

:DISPlay Sets the reference level for a sensor from the input power level. page 78

:STATe/? Sets or returns whether sensor results are in relative or absolute
units.

page 79

:STATe:RATio/? Sets or returns whether sensor results are displayed relative to a
slot or to an absolute reference.

page 79

:SLOT[n][:HEAD]

:EMPTy? Returns whether the module slot is empty. page 60

:IDN? Returns information about the module. page 60

:OPTions? Returns the module’s options. page 60

:TST? Returns the latest selftest results for a module. page 60

:WAVelength:RESPonse? Returns the wavelength response from port n, in binary data
format.

page 61

:WAVelength:RESPonse:CSV? Returns the wavelength response from port n, in .csv data format. page 61

:WAVelength:RESPonse:SIZE? Returns the number of elements in the wavelength response
table.

page 61

:STATus:OPERation

[:EVENt]? Returns the Operational Status Event Summary Register (OESR). page 42

:CONDition? Returns the Operational Status Condition Summary Register. page 42

:ENABle/? Sets or queries the Operational Status Enable Summary Mask. page 42

:STATusn:OPERation

[:EVENt]? Returns the Operational Slot Status Event Register for slot n. page 42

:CONDition? Returns the Operational Slot Status Condition Register for slot n. page 42

:ENABle/? Sets or queries the Operation Slot Status Enable Mask for slot n. page 42

:STATus:QUEStionable

[:EVENt]? Returns the Questionable Status Event Summary Register. page 43

:CONDition? Returns the Questionable Status Condition Summary Register. page 46

:ENABle/? Sets or queries the Questionable Status Enable Summary Mask. page 46

:STATus:QUEStionable

[:EVENt]? Returns the Questionable Slot Status Event Register for slot n. page 43

:CONDition? Returns the Questionable Slot Status Condition Register for slot
n.

page 46

:ENABle/? Sets or queries the Questionable Slot Status Enable Mask for
slot n.

page 46

Table 1 Specific Command Summary (continued)

Command Description Page

Specific Commands 2

Multi-Port Power Meter Programming Guide 31

:SYSTem

:DATE/? The Multiport Power Meter has no internal clock. This command
is included for backwards compatibility.

page 47

:ERRor? Returns the contents of the instrument’s error queue. page 47

:HELP:HEADers? Returns a list of GPIB commands. page 47

:LXI:IDN Starts or stops the LAN LED. This can be used to identify the unit. page 48

:PRESet Sets all parameters to their default values. page 48

:REBoot Reboots the instrument page 48

:TIME/? The Multiport Power Meter has no internal clock. This command
is included for backwards compatibility.

page 48

:VERSion? Returns the instrument’s SCPI version. page 49

:SYSTem:COMMunicate:ETHernet

:CANCel Undo changes to the network parameters. page 55

:DGATeway/? Set/Get the default gateway. page 54

:DGATeway:CURRent? Get the currently used default gateway. page 52

:DHCP:ENABle/? Enable/Check whether DHCP is enabled or disabled. page 50

:DOMainname/? Set/Get the domain name page 52

:DOMainname:CURRent? Get the currently used domain name page 51

:HOSTname/? Set/Get the host name page 52

:HOSTname:CURRent? Get the current host name. page 51

:IPADdress/? Set/Get the manually set IP address of the system. page 53

:IPADdress:CURRent? Get the current IP address of the system. page 51

:MACaddress? Get the MAC address of the network adapter. page 50

:RESet Resets all LAN parameters to the factory default. page 54

:RESTart Restart the system’s network interface. page 54

:SAVE Save the system’s network interface parameters. page 55

:SMASk/? Set/Get the subnet mask. page 53

:SMASk:CURRent? Get the currently used subnet mask. page 51

:SYSTem:COMMunicate:GPIB

[:SELF]:ADDRess/? Sets or returns the GPIB address. page 49

:TRIGger:CONFiguration/? Sets or returns trigger configuration. page 84

:TRIGger[n][CHANnel[m]]

:INPut/? Sets or returns the incoming trigger response . page 82

:OUTPut/? Sets or returns the outgoing trigger response. page 83

Table 1 Specific Command Summary (continued)

Command Description Page

32 Multi-Port Power Meter Programming Guide

2 Specific Commands

33

Agilent N7744A / N7745A Multiport Power Meter
Programming Guide

Agilent Technologies

3
Instrument Setup and Status

This chapter gives descriptions of commands that you can use when
setting up your instrument. The commands are split into the following
separate subsytems:

• IEEE specific commands that were introduced in “Common
Commands" on page 18.

• STATus subsystem commands that relate to the status model.

• SYSTem subsystem commands that control the serial interface and
internal data.

IEEE-Common Commands 34

Status Reporting – The STATus Subsystem 40

Interface/Instrument Behaviour Settings – The SYSTem Subsystem 47

Handling Measurement Settings - The :CONFigure:MEASurement:SETTing
subtree 56

34 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

IEEE-Common Commands

“Common Commands" on page 18 gave a brief introduction to
the IEEE-common commands which can be used with the
instruments. This section gives fuller descriptions of each of
these commands.

command: *CLS

syntax: *CLS

description: The CLear Status command *CLS clears the following:
Error queue
Standard event status register (SESR)
Status byte register (STB)
After the *CLS command the instrument is left waiting for the next command. The
instrument setting is unaltered by the command, although *OPC/*OPC? actions are
cancelled.

parameters: none

response: none

example: *CLS

command: *ESE

syntax: *ESE<wsp><value>
0 ≤ value ≤ 255

description: The standard Event Status Enable command (*ESE) sets bits in the Standard Event Status
Enable Mask (SESEM) that enable the corresponding bits in the standard event status
register (SESR).
The register is cleared:
at power-on,
by sending a value of zero.
The register is not changed by the *RST and *CLS commands.

parameters: The bit value for the register (a 16-bit signed integer value):

Bit Mnemonic Decimal Value

7 (MSB) Power On 128

6 Not Used 0

5 Command Error 32

4 Execution Error 16

3 Device Dependent Error 8

2 Query Error 4

1 Not Used 0

0 (LSB) Operation Complete 1

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 35

response: none

example: *ESE 21

command: *ESE?

syntax: *ESE?

description: The standard Event Status Enable query *ESE? returns the contents of the Standard Event
Status Enable Mask (see *ESE for information on this register).

parameters: none

response: The bit value for the register (a 16-bit signed integer value).

example: *ESE? → 21<END>

command: *ESR?

syntax: *ESR?

description: The standard Event Status Register query *ESR? returns the contents of the Standard Event
Status Register. The register is cleared after being read.

parameters none

response

The bit value for the register (a 16-bit signed integer value):

Bit Mnemonic Decimal Value

7 (MSB) Power On 128

6 Not used 0

5 Command Error 32

4 Execution Error 16

3 Device Dependent Error 8

2 Query Error 4

1 Not used 0

0 (LSB) Operation Complete 1

example: *ESR? → 21<END>

command: *IDN?

syntax: *IDN?

description: The IDeNtification query *IDN? gets the instrument identification over the interface.

parameters: none

36 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

response: The identification terminated by <END>:
For example.

Agilent Technologies

mmmm

ssssssss

rrrrrrrrrr

manufacturer
instrument model
number (for example
N7744A)
serial number
firmware revision level

example: *IDN? → Agilent Techologies,mmmm,ssssssss,rrrrrrrrrr<END>

command: *OPC

syntax: *OPC

description: The instrument parses and executes all program message units in the input queue and sets
the operation complete bit in the standard event status register (SESR). This command can
be used to avoid filling the input queue before the previous commands have finished
executing.
Some module firmware includes commands that set a "StatNOPC" flag during execution to
indicate that the module is busy. *OPC blocks the GPIB bus to all commands until every
module hosted by the instrument is no longer busy.
The following actions cancel the *OPC command (and put the instrument into Operation
Complete, Command Idle State):
Power-on
the Device Clear Active State is asserted on the interface.
*CLS
*RST

parameters: none

response: none

example: *OPC

command: *OPC?

syntax: *OPC?

description: The OPeration Complete query *OPC? parses all program message units in the input queue,
sets the operation complete bit in the Standard Event Status register, and places an ASCII
’1’ in the output queue, when the contents of the input queue have been processed.
Some module firmware includes commands that set a "StatNOPC" flag during execution to
indicate that the module is busy. If a module is executing a command which generates a
"StatNOPC" flag, the GPIB bus is not blocked to a command to another module. A second
command to a busy module is blocked until the module flag "StatOK" is set. Taking
advantage of this feature, and using *OPC? in a loop to query until the instrument returns 1,
can lead to useful gains in program execution efficiency.
The following actions cancel the *OPC? query (and put the instrument into Operation
Complete, Command Idle State):
Power-on
the Device Clear Active State is asserted on the interface.
*CLS
*RST

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 37

parameters: none

response: 1<END> is returned if all modules are ready to execute a new operation.
0<END> is returned if any module is busy.

example: *OPC? → 1<END>

command: *OPT?

syntax: *OPT?

description: The OPTions query *OPT? returns the modules installed in your instrument.

parameters: none

response: Returns the part number of all installed modules, separated by commas.
Slots are listed starting with the lowest slot number, that is, slot 0.

If any slot is empty or not recognised, two spaces are inserted instead of the module’s part
number. See the example below, where slots 1 and 4 are empty.

example: *OPT? → N7744A , ,<END>

command: *RST

syntax: *RST

description: The ReSeT command *RST sets the mainframe and all modules to the reset setting
(standard setting) stored internally.
Pending *OPC? actions are cancelled.
The instrument is placed in the idle state awaiting a command. The *RST command clears
the error queue.
The *RST command is equivalent to the *CLS command AND the syst:preset command.
The following are not changed:
GPIB (interface) state
Instrument interface address
Output queue
Service request enable register (SRE)
Standard Event Status Enable Mask (SESEM)

parameters: none

response: none

example: *RST

command: *STB?

syntax: *STB?

description: The STatus Byte query *STB? returns the contents of the Status Byte register.

parameters: none

38 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

response: The bit value for the register (a 16-bit signed integer value):

Bit Mnemonic Decimal Value

7 (MSB) Operation Status (OSB) 128

6 Not used 0

5 Event Status Bit (ESB) 32

4 Message Available (MAV) 16

3 Questionable Status (QSB) 8

2 Not used 0

1 Not used 0

0 Not used 0

example: *STB? → 128<END>

command: *TST?

syntax: *TST?

description: The self-TeST query *TST? makes the instrument perform a self-test and place the results of
the test in the output queue. If the self-test fails, the results are also put in the error queue.
We recommend that you read self-test results from the error queue. No further commands
are allowed while the test is running. After the self-test the instrument is returned to the
setting that was active at the time the self-test query was processed. The self-test does not
require operator interaction beyond sending the *TST? query.

parameters: none

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 39

response: The sum of the results for the individual tests (a 32-bit signed integer value, where 0 ≤ value
≤ 4294967296):

Bits Mnemonic Decimal Value

31 Selftest failed on Mainframe A negative value

18 - 30 Not used 0

17 Selftest failed on Slot 17 131072

16 Selftest failed on Slot 16 65536

15 Selftest failed on Slot 15 32768

14 Selftest failed on Slot 14 16384

13 Selftest failed on Slot 13 8192

12 Selftest failed on Slot 12 4096

11 Selftest failed on Slot 11 2048

10 Selftest failed on Slot 10 1024

9 Selftest failed on Slot 9 512

8 Selftest failed on Slot 8 256

7 Selftest failed on Slot 7 128

6 Selftest failed on Slot 6 64

5 Selftest failed on Slot 5 32

4 Selftest failed on Slot 4 16

3 Selftest failed on Slot 3 8

2 Selftest failed on Slot 2 4

1 Selftest failed on Slot 1 2

0 Selftest failed on Slot 0 1

If 16 is returned, the module in slot 4 has failed.
If 18 is returned, the modules in slots 1 and 4 have failed.
A value of zero indicates no errors.

example: *TST? → 0<END>

command: *WAI

syntax: *WAI

description: The WAIt command prevents the instrument from executing any further commands until the
current command has finished executing. Some module firmware includes commands that
set a "StatNOPC" flag during execution to indicate that the module is busy. *WAI blocks the
GPIB bus to all commands until every module hosted by the instrument is no longer busy. All
pending operations, are completed during the wait period.

parameters: none

response: none

example: *WAI

40 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

Status Reporting – The STATus Subsystem

The Status subsystem allows you to return and set details from
the Status Model. For more details, see “The Status Model" on
page 20.

command: :STATus:OPERation[:EVENt][:LEVel]?

syntax: :STATus:OPERation[:EVENt][:LEVel]?

description: Returns the Operational Status Event Summary Register (OSESR).

parameters: none

response: The sum of the results for the slots (a 16-bit signed integer value, where 0 ≤ value ≤ 32767):

Bits Mnemonics Decimal Value

15 Not used 0

14 Not used 16384

13 Not used 8192

12 Not used 4096

11 Not used 2048

10 Not used 1024

9 Not used 512

8 Not used 256

7 Slot 8 Summary 128

6 Slot 7 Summary 64

5 Slot 6 Summary 32

4 Slot 5 Summary 16

3 Slot 4 Summary 8

2 Slot 3 Summary 4

1 Slot 2 Summary 2

0 Slot 1 Summary 1

example: stat:oper? → +0<END>

command: :STATus:OPERation:CONDition[:LEVel]?

syntax: :STATus:OPERation:CONDition[:LEVel]?

description: Reads the Operational Status Condition Summary Register.

parameters: none

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 41

response: The sum of the results for the individual slots (a 16-bit signed integer value, where 0 ≤ value ≤
32767):

Bits Mnemonics Decimal Value

15 Not used 0

14 Not used 16384

13 Not used 8192

12 Not used 4096

11 Not used 2048

10 Not used 1024

9 Not used 512

8 Not used 256

7 Slot 8 Summary 128

6 Slot 7 Summary 64

5 Slot 6 Summary 32

4 Slot 5 Summary 16

3 Slot 4 Summary 8

2 Slot 3 Summary 4

1 Slot 2 Summary 2

0 Slot 1 Summary 1

example: stat:oper:cond? → +0<END>

command: :STATus:OPERation:ENABle[:LEVel]

syntax: :STATus:OPERation:ENABle[:LEVel]<wsp><value>

description: Sets the bits in the Operational Status Enable Summary Mask (OSESM) that enable the
contents of the OSESR to affect the Status Byte (STB).
Setting a bit in this register to 1 enables the corresponding bit in the OSESR to affect bit 7 of
the Status Byte.

parameters: The bit value for the OSESM as a 16-bit signed integer value (0 .. +32767)
The default value is 0.

response: none

example: stat:oper:enab 128

command: :STATus:OPERation:ENABle[:LEVel]?

syntax: :STATus:OPERation:ENABle[:LEVel]?

description: Returns the OSESM for the OSESR

parameters: none

response: The bit value for the operation enable mask as a 16-bit signed integer value (0 .. +32767)

example: stat:oper:enab? → +128<END>

42 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

command: :STATusn:OPERation[:EVENt]?

syntax: :STATusn:OPERation[:EVENt]?

description: Returns the Operational Slot Status Event Register (OSSER) of slot n.

parameters: none

response: The results for the individual slot events (a 16-bit signed integer value, where 0 ≤ value ≤
32767):

Bit
8-15
7

6

5

4

3

2

1

0

Mnemonic
Not used
Not used

Not used

Not used

Not used

Slot n: Zeroing ongoing

Not used

Not used

Not used

Decimal Value
0
128

64

32

16

8

0

2

1

example: stat1:oper? → +0<END>

command: :STATusn:OPERation:CONDition?

syntax: :STATusn:OPERation:CONDition?

description: Returns the Operational Slot Status Condition Register of slot n.

parameters: none

response: The results for the individual slot events (a 16-bit signed integer value, where 0 ≤ value ≤
32767):

Bit
8-15
7

6

5

4

3

2

1

0

Mnemonic
Not used
Not used
Not used

Not used

Not used

Not used

Slot n: Zeroing ongoing

Not used

Not used

Not used

Decimal Value
0
128

64

32

16

8

0

2

1

example: stat1:oper:cond? → +0<END>

command: :STATusn:OPERation:ENABle

syntax: :STATusn:OPERation:ENABle<wsp><value>

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 43

description: Sets the bits in the Operation Slot Status Enable Mask (OSSEM) for slot n that enable the
contents of the Operation Slot Status Event Register (OSSER) for slot n to affect the OSESR.
Setting a bit in this register to 1 enables the corresponding bit in the OSSER for slot n to
affect bit n of the OSESR.

parameters: The bit value for the OSSEM as a 16-bit signed integer value (0 .. +32767)

response: none

example: stat:oper:enab 128

command: :STATusn:OPERation:ENABle?

syntax: :STATusn:OPERation:ENABle?

description: Returns the OSSEM of slot n

parameters: none

response: The bit value for the OSSEM as a 16-bit signed integer value (0 .. +32767)

example: stat:oper:enab? → +128<END>

command: :STATus:PRESet

syntax: :STATus:PRESet

description: Presets all bits in all the enable masks for both the OPERation and QUEStionable status
systems to 0, that is, OSSEM, QSSEM, OSESM, and QSESM.

parameters: none

response: none

example: stat:pres

command: :STATus:QUEStionable[:EVENt][:LEVel]?

syntax: :STATus:QUEStionable[:EVENt][:LEVel]?

description: Returns the Questionable Status Event Summary Register (QSESR).

parameters: none

44 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

response: The sum of the results for the QSESR as a 16-bit signed integer value (0 .. +32767)

Bits Mnemonics Decimal Value

15 Not used 0

14 Not used 16384

13 Not used 8192

12 Not used 4096

11 Not used 2048

10 Not used 1024

9 Not used 512

8 Not used 256

7 Not used 128

6 Not used 64

5 Not used 32

4 Not used 16

3 Not used 8

2 Not used 4

1 Slot 2 Summary 2

0 Slot 1 Summary 1

example: stat:ques? → +0<END>

command: :STATus:QUEStionable:CONDition[:LEVel]?

syntax: :STATus:QUEStionable:CONDition[:LEVel]?

description: Returns the Questionable Status Condition Summary Register.

parameters: none

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 45

response: The sum of the results for the Questionable Status Condition Summary Register as a 16-bit
signed integer value (0 .. +32767)

Bits Mnemonics Decimal Value

15 Not used 0

14 Not used 16384

13 Not used 8192

12 Not used 4096

11 Not used 2048

10 Not used 1024

9 Not used 512

8 Not used 256

7 Not used 128

6 Not used 64

5 Not used 32

4 Not used 16

3 Not used 8

2 Not used 4

1 Slot 2 Summary 2

0 Slot 1 Summary 1

example: stat:ques:cond? → +0<END>

command: :STATus:QUEStionable:ENABle[:LEVel]

syntax: :STATus:QUEStionable:ENABle[:LEVel0]<wsp><value>

description: Sets the bits in the Questionable Status Enable Summary Mask (QSESM) that enable the
contents of the QSESR to affect the Status Byte (STB).
Setting a bit in this register to 1 enables the corresponding bit in the QSESR to affect bit 3 of
the Status Byte.

parameters: The bit value for the questionable enable mask as a 16-bit signed integer value (0 .. +32767)
The default value is 0.

response: none

example: stat:ques:enab 128

command: :STATus:QUEStionable:ENABle[:LEVel]?

syntax: :STATus:QUEStionable:ENABle[:LEVel0]?

description: Returns the QSESM for the event register

parameters: none

response: The bit value for the QSEM as a 16-bit signed integer value (0 .. +32767)

example: stat:ques:enab? → +128<END>

46 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

command: :STATusn:QUEStionable:CONDition?

syntax: :STATusn:QUEStionable:CONDition?

description: Returns the Questionable Slot Status Condition Register for slot n.

parameters: none

response: The results for the individual slot events (a 16-bit signed integer value, where 0 ≤ value ≤
32767):

Bit
11 - 15

10

9

8

7

6

5

4

3

2

1

0

Mnemonic
Not Used

Slot n: Lambda zeroing is recommended

Slot n: Beam Path Protection on (shutter off)
Slot n: Coherence control is uncalibrated

Slot n: Duty cycle is out of range

Slot n: ARA recommended

Slot n: Module is out of specification

Slot n: Module has not settled

Slot n: Laser protection on

Slot n: Temperature out of range

Slot n: Zeroing failed
Slot n: Excessive Value

Decimal Value

1024

512

256

128

64

32

16

8

4

2

1

Every nth bit is the summary of slot n.

example: stat1:ques:cond? → +0<END>

command: :STATusn:QUEStionable:ENABle

syntax: :STATusn:QUEStionable:ENABle<wsp><value>

description: Sets the bits in the Questionable Slot Status Enable Mask (QSSEM) for slot n that enable the
contents of the Questionable Slot Status Register (QSSR) for slot n to affect the QSESR.
Setting a bit in this register to 1 enables the corresponding bit in the QSSER for slot n to
affect bit n of the QSESR.

parameters: The bit value for the QSSEM as a 16-bit signed integer value (0 .. +32767)

response: none

example: stat:ques:enab 128

command: :STATusn:QUEStionable:ENABle?

syntax: :STATusn:QUEStionable:ENABle?

description: Returns the QSSEM for slot n

parameters: none

response: The bit value for the QSSEM as a 16-bit signed integer value (0 .. +32767)

example: stat:ques:enab? → +128<END>

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 47

Interface/Instrument Behaviour Settings – The SYSTem Subsystem

The SYSTem subsystem lets you control the instrument’s serial
interface. You can also control some internal data (like date,
time, and so on).

command: :SYSTem:DATE

syntax: :SYSTem:DATE<wsp><year>,<month>,<day>

description: The Multiport Power Meter has no internal clock. This command is included for backwards
compatibility.

command: :SYSTem:DATE?

syntax: :SYSTem:DATE?

description: The Multiport Power Meter has no internal clock. This query is included for backwards
compatibility.

parameters: none

response: The date in the format year, month, day (16-bit signed integer values)

example: syst:date? → +0000,+0,+00<END>

command: :SYSTem:ERRor?

syntax: :SYSTem:ERRor?

description: Returns the next error from the error queue (see “The Error Queue" on page 13).
Each error has the error code and a short description of the error, separated by a comma, for
example 0, "No error".
Error codes are numbers in the range -32768 and +32767.
Negative error numbers are defined by the SCPI standard. Positive error numbers are device
dependent.

parameters: none

response: The number of the latest error, and its meaning.

example: syst:err? → -113,"Undefined header"<END>

command: :SYSTem:HELP:HEADers?

syntax: :SYSTem:HELP:HEADers?

description: Returns a list of all GPIB commands.

parameters: none

response: Returns a list of all GPIB commands

example: syst:help:head? → Returns a list of all GPIB commands

48 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

command: :SYSTem:LXI:IDN

syntax: :SYSTem:LXI:IDN<wsp><boolean>

description: This command starts or stops the LAN LED on the front panel blinking. This makes it easy to
identify the unit associated with the address.

parameters: boolean (0 | 1 | off | on)

response: none

example: SYST:LXI:IDN ON

command: :SYSTem:PRESet

syntax: :SYSTem:PRESet

description: Sets the mainframe and all installed modules to their standard settings.
The following are not affected by this command:
the GPIB, USB and LAN (interface) state,
the interface addresses,
the output and error queues,
the Service Request Enable register (SRE),
the Status Byte (STB),
the Standard Event Status Enable Mask (SESEM), and
the Standard Event Status Register (SESR).

parameters: none

response: none

example: SYST:PRES

command: :SYSTem:REBoot

syntax: :SYSTem:REBoot

description: Reboots the instrument

parameters: none

response: none

example: SYST:REB

command: :SYSTem:TIME

syntax: :SYSTem:TIME<wsp><hour>,<minute>,<second>

description: The Multiport Power Meter has no internal clock. This command is included for backwards
compatibility.

command: :SYSTem:TIME?

syntax: :SYSTem:TIME?

description: The Multiport Power Meter has no internal clock. This query is included for backwards
compatibility.

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 49

:SYSTem:COMMunicate:ETHernet subtree

The optical power meter supports USB and LAN interfaces.The
:SYSTem:COMMunicate:ETHernet subtree is only necessary for
setting up the LAN (ETHernet).

When first delivered, DHCP is enabled.
If you do not want to use DHCP, or if it is not supported by your
network, configure the network settings first over USB.
Although later changes can be made using the LAN interface,
we recommend always changing ethernet parameters via USB
connection, otherwise you may lose your connection.

The default host name is of the format

parameters: none

response: The time in the format hour, minute, second. Hours are counted 0...23 (16-bit signed integer
values).

example: syst:time? → +00,+00,+00<END>

command: :SYSTem:VERSion?

syntax: :SYSTem:VERSion?

description: Returns the SCPI revision to which the instrument complies.

parameters: none

response: The revision year and number.

example: syst:vers? → 1990.0<END>

command: :SYSTem:COMMunicate:GPIB[:SELF]:ADDRess

syntax: :SYSTem:COMMunicate:GPIB[:SELF]:ADDRess<wsp><GPIB Address>

description: Sets the GPIB address.

parameters: The GPIB Address Values allowed 0-30
21 is often reseverved by the GPIB Controller.

response: none

example: SYST:COMM:GPIB:ADDR 20

command: :SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?

syntax: :SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?

description: Returns the GPIB address.

parameters: none

response: The GPIB Address

example: SYST:COMM:GPIB:ADDR? → +20<END>

50 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

A-PPPPPP-SSSSSS

where, PPPPPP is the product number (for example, N7745A),
and SSSSSS is the last six digits of the serial number. For
example, A-N7745A-123456.

Some notes on DHCP/AutoIP/DNS

If DHCP is enabled but no DHCP server is found, the power
meter tries to use AutoIP as a fallback. AutoIP can take some
time (depending on timeout settings).

Depending on the availabe network capabilities the power
meter tries to tell the DNS server its host name, or read the host
name it has been assigned.

MAC address

The Media Access Control (MAC) number is a unique number
associated with each DTS network adapter.

Automatically set Ethernet parameters

If DHCP/AutoIP is enabled, the optical power meter may use
other parameters than specified explicitly, that is, it will use the
parameters provided by the DHCP server. It tries to use its
configured hostname (which may fail, depending on the
network setup).

There will be an error if you try to query these parameters if the
network is not connected, or before they have been set by the
DHCP server.

command: :SYSTem:COMMunicate:ETHernet:MACaddress?

syntax: :SYSTem:COMMunicate:ETHernet:MACaddress?

description: Get the MAC address of the network adapter.

parameters: none

response: response string (hex value without a prefix or separators).

example: :syst:comm:eth:mac? → “0007E014AE08”<END>

command: :SYSTem:COMMunicate:ETHernet:DHCP:ENABle

syntax: :SYSTem:COMMunicate:ETHernet:DHCP:ENABle

description: Enable or disable DHCP

parameters: boolean (0 | 1 | off | on)

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 51

response: none

example: :syst:comm:eth:dhcp:enab on

command: :SYSTem:COMMunicate:ETHernet:DHCP:ENABle?

syntax: :SYSTem:COMMunicate:ETHernet:DHCP:ENABle?

description: Check whether DHCP is enabled or disabled.

parameters: none

response: boolean (0 | 1)

example: :syst:comm:eth:dhcp:enab? → 1<END>

command: :SYSTem:COMMunicate:ETHernet:IPADdress:CURRent?

syntax: :SYSTem:COMMunicate:ETHernet:IPADdress:CURRent?

description: Get the current IP address of the system.

parameters: none

response: string

example: :syst:comm:eth:ipad:curr? → “192.132.13.2”<END>

command: :SYSTem:COMMunicate:ETHernet:SMASk:CURRent?

syntax: :SYSTem:COMMunicate:ETHernet:SMASk:CURRent?

description: Get the currently used subnet mask.

parameters: none

response: string

example: example :syst:comm:eth:smas:curr? → “255.255.255.0”<END>

command: :SYSTem:COMMunicate:ETHernet:HOSTname:CURRent?

syntax: :SYSTem:COMMunicate:ETHernet:HOSTname:CURRent?

description: Get the current host name.
The default host name is A-P..P-S..S; where A is forAgilent, P..P is the Product Number, and
S..S is as many of the last digits of the Serial Number to get a 15 character hostname. For
example: A-N7745A-012345

parameters: none

response: string

example: :syst:comm:eth:host:curr? → “A-N7745A-123456”<END>

command: :SYSTem:COMMunicate:ETHernet:DOMainname:CURRent?

syntax: :SYSTem:COMMunicate:ETHernet:DOMainname:CURRent?

description: Get the currently used domain name

52 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

Explicitly set Ethernet parameters

You must reboot the instrument or send a
SYST:COMM:ETH:RESTart command before any alterations to
the Ethernet parameters become effective.

If you query one of the alterable parameters, you always get the
most recently set value, even if you have not yet activated it.

To undo any changes before they become active, send
SYST:COMM:ETH:CANCel.

parameters: none

response: string

example: :syst:comm:eth:dom:curr? → “.companyame.com”<END>

command: :SYSTem:COMMunicate:ETHernet:DGATeway:CURRent?

syntax: SYSTem:COMMunicate:ETHernet:DGATeway:CURRent?

description: Get the currently used default gateway.

parameters: none

response: string (maximum 79 characters)

example: :syst:comm:eth:dgat:curr? → “192.168.101.11“<END>

command: :SYSTem:COMMunicate:ETHernet:HOSTname

syntax: :SYSTem:COMMunicate:ETHernet:HOSTname

description: Set the host name

parameters: string (maximum 79 characters, though not all characters can be used)

response: none

example: :syst:comm:eth:host “powermeter1”

command: :SYSTem:COMMunicate:ETHernet:HOSTname?

syntax: :SYSTem:COMMunicate:ETHernet:HOSTname?

description: Get the host name

parameters: none

response: string

example: :syst:comm:eth:host? → “powermeter1”<END>

command: SYSTem:COMMunicate:ETHernet:DOMainname

syntax: :SYSTem:COMMunicate:ETHernet:DOMainname

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 53

description: Set the domain name (used if DHCP is disabled)

parameters: string (maximum 79 characters, though not all characters can be used)

response: none

example: :syst:comm:eth:dom “.companyname.com”

command: :SYSTem:COMMunicate:ETHernet:DOMainname?

syntax: :SYSTem:COMMunicate:ETHernet:DOMainname?

description: Get the domain name

parameters: none

response: string

example: :syst:comm:eth:dom? → “.companyname.com”<END>

command: :SYSTem:COMMunicate:ETHernet:IPADdress

syntax: :SYSTem:COMMunicate:ETHernet:IPADdress

description: Set the IP address of the system manually (used if DHCP is disabled).

parameters: string (maximum 79 characters, though only integers and the period, “.”, can be used)

response: none

example: :syst:comm:eth:ipad “192.132.13.2”

command: :SYSTem:COMMunicate:ETHernet:IPADdress?

syntax: :SYSTem:COMMunicate:ETHernet:IPADdress?

description: Get the manually set IP address of the system.

parameters: none

response: string

example: :syst:comm:eth:ipad? → “192.132.13.2”<END>

command: :SYSTem:COMMunicate:ETHernet:SMASk

syntax: :SYSTem:COMMunicate:ETHernet:SMASk

description: Set the subnet mask.

parameters: string (maximum 79 characters, though only integers and the period, “.”, can be used)

response: none

example: :syst:comm:eth:smas “255.255.255.0“

command: :SYSTem:COMMunicate:ETHernet:SMASk?

syntax: :SYSTem:COMMunicate:ETHernet:SMASk?

description: Get the subnet mask.

parameters: none

54 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

Changing the Ethernet parameters

In most cases, instead of using
:SYSTem:COMMunicate:ETHernet:RESTart, it is better to save
the new parameters (:SYSTem:COMMunicate:SAVE) and reboot
the instrument (:SYSTem:REBoot).

response: string

example: :syst:comm:eth:smas? → “255.255.255.0”<END>

command: :SYSTem:COMMunicate:ETHernet:DGATeway

syntax: :SYSTem:COMMunicate:ETHernet:DGATeway

description: Set the default gateway.

parameters: string (maximum 79 characters, though only integers and the period, “.”, can be used)

response: none

example: :syst:comm:eth:dgat “192.168.101.11“

command: :SYSTem:COMMunicate:ETHernet:DGATeway?

syntax: SYSTem:COMMunicate:ETHernet:DGATeway?

description: Get the default gateway.

parameters: none

response: string (maximum 79 characters)

example: :syst:comm:eth:dgat? → “192.168.101.11“<END>

command: :SYSTem:COMMunicate:ETHernet:RESet

syntax: :SYSTem:COMMunicate:ETHernet:RESet

description: Resets all the LAN parameters to the factory default.
• DHCP On
• AutoIP On
• Hostname is a concatenation of product number and serial number.
• The password for the web based LAN configuration interface is reset to ‘agilent’.
This command is also triggered when the reset button on the front panel is pressed longer
than 3 seconds.

parameters: none

response: none

example: :syst:comm:eth:res

command: :SYSTem:COMMunicate:ETHernet:RESTart

syntax: :SYSTem:COMMunicate:ETHernet:RESTart

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 55

description: Restart the system’s network interface with the new parameters.
This command only works if the instrument has a working network connection at the time
the command is issued. If you are connected by USB, use
:SYSTem:COMMunicate:ETHernet:SAVE followed by :SYSTem:REBoot.

parameters: none

response: none

example: :syst:comm:eth:rest

command: :SYSTem:COMMunicate:ETHernet:SAVE

syntax: :SYSTem:COMMunicate:ETHernet:SAVE

description: Save the system’s network interface parameters.

parameters: none

response: none

example: :syst:comm:eth:save

command: :SYSTem:COMMunicate:ETHernet:CANCel

syntax: :SYSTem:COMMunicate:ETHernet:CANCel

description: Undo all changes to the network parameters that have been made since the last save, reboot
or “:syst:comm:eth:restart” command.

parameters: none

response: none

example: :syst:comm:eth:canc

56 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

Handling Measurement Settings - The :CONFigure:MEASurement:SETTing
subtree

The instrument can store a number of settings in FLASH
memory. The number of memory places can be queried with
CONF:MEAS:SETT:NUMBer?.

A 'measurement setting consists of all parameters which can be
set with the :SENSe:* commands.

After each parameter change, you can use :SYSTem:ERRor? to
check if it is OK.

command: :CONFigure:MEASurement:SETTing:ACTual?

syntax: :CONFigure:MEASurement:SETTing:ACTual?

description: Get the index of the setting currently being used.

parameters: none

response: int
A value >0 is returned if the setting has been stored in FLASH memory (using
:CONFigure:MEASurement:SETTing:SAVE), or has been recalled from FLASH memory (using
:CONFigure:MEASurement:SETTing:RECall), and has not been changed since.
0 is returned if the FLASH setting has been deleted
(using:CONFigure:MEASurement:SETTing:ERASe) since the last recall or store. 0 is also
returned if the setting has not yet been stored.
-1 is returned if the setting was changed but has not saved yet.

example: :conf:meas:sett:act? → +2<END>

command: :CONFigure:MEASurement:SETTing:NUMBer?

syntax: :CONFigure:MEASurement:SETTing:NUMBer?

description: Get the number of settings. In addition to the settings spaces in FLASH memory, the working
memory can hold a setting.

parameters: none

response: int

example: :conf:meas:sett:numb? → +1<END>

command: :CONFigure:MEASurement:SETTing:PRESet

syntax: :CONFigure:MEASurement:SETTing:PRESet

description: Resets the setting values in the working memory

parameters: none

response: none

example: :conf:meas:sett:pres

Instrument Setup and Status 3

Multi-Port Power Meter Programming Guide 57

command: :CONFigure:MEASurement:SETTing:CANCel

syntax: :CONFigure:MEASurement:SETTing:CANCel

description: Discard all the changes to the setting since the last save or recall

parameters: none

response: none

example: :conf:meas:sett:canc

command: :CONFigure:MEASurement:SETTing:RECall

syntax: :CONFigure:MEASurement:SETTing:RECall

description: Recall a setting from FLASH memory.

parameters: int (setting index)

response: none

example: :conf:meas:sett:rec 1

command: :CONFigure:MEASurement:SETTing:SAVE

syntax: :CONFigure:MEASurement:SETTing:SAVE

description: Save the current setting to FLASH memory.

parameters: int (setting index)

response: none

example: :conf:meas:sett:sav 1

command: :CONFigure:MEASurement:SETTing:ERASe

syntax: :CONFigure:MEASurement:SETTing:ERASe

description: Erase a setting from memory.

parameters: int (setting index)

response: none

example: :conf:meas:sett:eras 1

58 Multi-Port Power Meter Programming Guide

3 Instrument Setup and Status

59

Agilent N7744A / N7745A Multiport Power Meter
Programming Guide

Agilent Technologies

4
Measurement Operations & Settings

This chapter gives descriptions of commands that you can use when you
are setting up or performing measurements. The commands are split up
into the following subsystems:

• Root layer commands that take power measurements, configures
triggering, and return information about the mainframe and it’s slots

• SENSe subsystem commands that control Power Sensors.

• TRIGger subsystem commands that control triggering.

Root Layer Command 60

Measurement Functions – The FETCh, INITiate, READ and SENSe
Subsystems 63

Triggering - The TRIGger Subsystem 82

60 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

Root Layer Command

The commands in the Slot subsystem allow you to query a
particular port n, identified here as slot, for compatibility with
the 816x platform.
For the same reason the command may optionally begin with
:SLOT[n][:HEAD[m]].

command: :SLOT[n]:EMPTy?

syntax: :SLOT[n]:EMPTy?

description: Queries whether the module slot is empty.

parameters: none

response: A boolean value: 0: there is a module in the slot
1: the module slot is empty

examples: slot1:empt? → 0<END> There is a module in slot1

affects: Independent of module type

command: :SLOT[n]:IDN?

syntax: :SLOT[n]:IDN?

description: Returns information about the module.

parameters: none

response: AGILENT:
mmmm:
ssssssss:
rrrrrrrrrr:

manufacturer
instrument model number (for example 81533B)
serial number
date of firmware revision

example: slot1:idn? → AGILENT, N7744A,3411G06054,07-Jan-08<END>

affects: Independent of module type

command: :SLOT[n]:OPTions?

syntax: :SLOT[n]:OPTions?

description: Returns information about a module’s options.

parameters: none

response: A string.

example: slot1:opt? → NO CONNECTOR OPTION, NO INSTRUMENT OPTIONS<END>

affects: Independent of module type

command: :SLOT[n]:TST?

syntax: :SLOT[n]:TST?

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 61

description: Returns the latest selftest results for a module.

This command does not perform a selftest. Use selfTeST command, *TST? on page 59, to
perform a selftest.

parameters: none

response: Returns an error code and a short description of the error.

example: slot:tst? → +0,"self test OK"<END>

affects: Independent of module type

command: :SLOT[n]:HEAD[m]:WAVelength:RESPonse?

syntax: :SLOT[n]:HEAD[m]:WAVelength:RESPonse?

description: Returns the wavelength response from a wavelength calibrated module in binary format.

parameters: none

response: Wavelength Response table as a binary block.
One 8 byte long wavelength calibration value pair consisting of a 4 byte long float for
wavelength and a 4 byte long float for the scalar calibration factor.
For more information on binary block formats see “Data Types" on page 16

example: slot1:head1:wav:resp? → #536570........

affects: Independent of module type

command: :SLOT[n]:HEAD[m]:WAVelength:RESPonse:CSV?

syntax: :SLOT[n]:HEAD[m]:WAVelength:RESPonse:CSV?

description: Returns the wavelength response from the attenuator module in CSV format.

parameters: none

response: Wavelength Response table as a string
The string is a comma separated value (CSV) list and can be written to a file and be
processed
with a spreadsheet program.
List format:
λ1, c1\n
λ2, c2\n
.......
λn, cn\n
"," separates wavelength and response factor
"\n" (= ASCII code 10) separates value pairs

example: slot1:head1:wav:resp:csv? → 1200e-6,2.019\n 1210e-6,
1.956\n...

affects: Independent of module type

command: :SLOT[n]:HEAD[m]:WAVelength:RESPonse:SIZE?

syntax: :SLOT[n]:HEAD[m]:WAVelength:RESPonse:SIZE?

62 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

description: Returns the number of elements in the wavelength response table.

parameters: none

response: Number of elements in the wavelength table as an integer value

example: slot2:head1:wav:resp:size? → 50<END>

affects: Independent of module type

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 63

Measurement Functions – The FETCh, INITiate, READ and SENSe
Subsystems

These subsystems let you control measurement parameters for
the power meter. Generally the parameter n refers to the optical
port number. The Channel parameter m is not needed and only
included for backward compatibility.

command: :FETCh[n][:CHANnel[m]][:SCAlar]:POWer[:DC]?

syntax: :FETCh[n][:CHANnel[m]][:SCAlar]:POWer[:DC]?

description: Reads the current power meter value. It does not provide its own triggering and so must be
used with either continuous software triggering (see
“:INITiate[n]:[CHANnel[m]]:CONTinuous?” on page 65) or a directly preceding immediate
software trigger (see “:INITiate[n][:CHANnel[m]][:IMMediate]” on page 64).
It returns the value the previous software trigger measured. Any subsequent FETCh
command will return the same value, if there is no subsequent software trigger.

parameters: none

response: The current value as a float value in dBm,W or dB.

If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.

example: fetc1:pow? → +6.73370400E-04<END>

command: :FETCh[n][:CHANnel[m]][:SCALar:]:POWer:ALL?

syntax: :FETCh[n][:CHANnel[m]][:SCALar]:POWer:[:DC]:ALL?

description: Reads all current power meter values. It does not provide its own triggering and so must be
used with either continuous software triggering (see
“:INITiate[n]:[CHANnel[m]]:CONTinuous?” on page 65) or a directly preceding immediate
software trigger (see “:INITiate[n][:CHANnel[m]][:IMMediate]” on page 64).
It returns the value the previous software trigger measured. Any subsequent FETCh
command will return the same values, if there is no subsequent software trigger.

The power meters must be running for this command to be effective.

parameters: none

response: 4-byte Intel float values in a binary block in Intel byte order. The values are ordered by slot.
See “Data Types" on page 16 for more information on Binary Blocks.

Data values are always in Watt.

example: fetc:pow:all? → interpreted as

+1.33555600E-006|+1.34789100E-006|+1.37456900E-006<END>

command: :FETCh[n][:CHANnel[m]][:SCALar:]:POWer:ALL:CSV?

syntax: :FETCh[n][:CHANnel[m]][:SCALar]:POWer:[:DC]:ALL:CSV?

64 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

description: Reads all current power meter values. It does not provide its own triggering and so must be
used with either continuous software triggering (see
“:INITiate[n]:[CHANnel[m]]:CONTinuous?” on page 65) or a directly preceding immediate
software trigger (see “:INITiate[n][:CHANnel[m]][:IMMediate]” on page 64).
It returns the value the previous software trigger measured. Any subsequent FETCh
command will return the same values, if there is no subsequent software trigger.

The power meters must be running for this command to be effective.

parameters: none

response: string containing the power values from each available channel in a comma separated
format.

Data values are always in Watt.

example: fetc:pow:all:CSV? → “+1.33555600E-06, +1.34789100E-06, +1.37456900E-06”<END>

command: :INITiate[n][:CHANnel[m]][:IMMediate]

syntax: :INITiate[n][:CHANnel[m]][:IMMediate]

description: Initiates the software trigger system and completes one full trigger cycle, that is, one
measurement is made.

parameters: none

response: none

example: init

command: :INITiate[n]:[CHANnel[m]]:CONTinuous

syntax: :INITiate[n]:[CHANnel[m]]:CONTinuous<wsp><boolean>

description: Sets the software trigger system to continuous measurement mode.

parameters: A boolean value: 0 or OFF: do not measure continuously

1 or ON: measure continuously

response: none

example: init2:cont 1

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 65

command: :INITiate[n]:[CHANnel[m]]:CONTinuous?

syntax: :INITiate[n]:[CHANnel[m]]:CONTinuous?

description: Queries whether the software trigger system operates continuously or not

parameters: none

response: A boolean value: 0 or OFF: measurement is not continuous

1 or ON: measurement is continuous

example: init2:cont? → 1<END>

command: :READ[n][:CHANnel[m]][:SCALar:]:POWer:ALL?

syntax: :READ[n][:CHANnel[m]][:SCALar:]:POWer:[:DC]:ALL?

description: Reads all available power channels. It provides its own software triggering and does not
need a triggering command.

parameters: none

response: 4-byte Intel float values in a binary block in Intel byte order. The values are ordered by slot.
See “Data Types" on page 16 for more information on Binary Blocks.

Data values are always in Watt.

example: read:pow:all? → interpreted as

+1.33555600E-006|+1.34789100E-006|+1.37456900E-006<END>

command: :READ[n][:CHANnel[m]]:POWer:ALL:CONFig?

syntax: :READ[n]:[CHANnel[m]]:POWer[:DC]:ALL:CONFig?

description: Returns the slot numbers for all available power meters.
Use this command to match returned power values to the appropriate slot.

parameters: none

response: A binary block (Intel byte order) consisting of 2-byte unsigned integer value pairs (so each
pair has 4 bytes). The first member of the pair represents the the slot number, the second
member of the pair represents the channel number. The channel number is always 1.

example: read1:pow:all:conf? → interpreted as
1|1|2|1|3|1|4|1<END>
This 16-byte block means that there are four powermeters present

command: :READ[n][:CHANnel[m]][:SCALar]:POWer[:DC]?

syntax: :READ[n]:[CHANnel[m]][:SCALar]:POWer[:DC]?

66 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

description: Reads the current power meter value, or for a return loss module the power value at the
return loss diode (back reflection path). It provides its own software triggering and does not
need a triggering command.
If the software trigger system operates continuously (see
“:INITiate[n]:[CHANnel[m]]:CONTinuous?” on page 65), this command is identical to
“:FETCh[n][:CHANnel[m]][:SCAlar]:POWer[:DC]?” on page 63.
If the software trigger system does not operate continuously, this command is identical to
generating a software trigger (“:INITiate[n][:CHANnel[m]][:IMMediate]” on page 64) and
then reading the power meter value.

The power meter must be running for this command to be effective.

parameters: none

response: The current power meter reading as a float value in dBm, W or dB.

If the reference state is absolute, units are dBm or W.
If the reference state is relative, units are dB.

example: read1:pow? → +1.33555600E-006<END>

command: :SENSe[n]:[CHANnel[m]]:CORRection[:LOSS][:INPut][:MAGNitude]

syntax: :SENSe[n]:[CHANnel[m]]:CORRection[:LOSS][:INPUT][:MAGNitude]<wsp>

<value>[DB|MDB]

description: Enters a calibration value for a module.

parameters: The calibration factor as a float value
If no unit type is specified, decibels (dB) is implied.

response: none

example: sens1:corr 10DB

command: :SENSe[n]:[CHANnel[m]]:CORRection[:LOSS][:INPut][:MAGNitude]?

syntax: :SENSe[n]:[CHANnel[m]]:CORRection[:LOSS][:INPUT][:MAGNitude]?

description: Returns the calibration factor for a module.

parameters: none

response: The calibration factor as a float value. Units are in dB, although no units are returned in the
response message.

example: sens1:corr? → +1.00000000E+000<END>

command: :SENSe[n]:[CHANnel[m]]:CORRection:COLLect:ZERO

syntax: :SENSe[n]:[CHANnel[m]]:CORRection:COLLect:ZERO

description: Zeros the electrical offsets for a power meter.

parameters: none

response: none

example: sens1:corr:coll:zero

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 67

command: :SENSe[n]:[CHANnel[m]]:CORRection:COLLect:ZERO?

syntax: :SENSe[n]:[CHANnel[m]]:CORREction:COLLect:ZERO?

description: Returns the status of the most recent zero command.

parameters: none

response: 0:
any other number:

zero succeeded without errors.
remote zeroing failed (the number is the error code returned from
the operation).

example: sens1:corr:coll:zero? → 0<END>

command: :SENSe[n]:[CHANnel[m]]:CORRection:COLLect:ZERO:ALL

syntax: SENSe[n]:[CHANnel[m]]:CORRection:COLLect:ZERO:ALL

description: Zeros the electrical offsets for all installed power meters.

parameters: none

response: none

example: sens:chan:corr:coll:zero:all

command: :SENSe[n]:[CHANnel[m]]:CORRection:COLLect:ZERO:ALL?

syntax: :SENSe[n]:[CHANnel[m]]:CORRection:COLLect:ZERO:ALL?

description: Returns the status of the most recent zero all command.
The result is backed up in the nonvolatile RAM.
Note: If a channel fails to zero, it continues to use the result of the last successful zeroing.

parameters: none

response: A hexadezimal integer value which represents the result for all channels.
Each hexadecimal digit represents one channel .
• 0: zero succeeded without errors.
• Any other number: remote zeroing failed (the number is the error code returned from the

operation).

example: sens:chan:corr:coll:zero:all? → 272
272 decimal = 0x110. This means zeroing failed on channels 2 and 3. All other channels were
successful.

Alternatively the result can be found with the individual commands:
sens1:chan:corr:coll:zero? → 0
sens2:chan:corr:coll:zero? → 1
sens3:chan:corr:coll:zero? → 1

NOTE Setting parameters for the logging function sets some parameters,
including hidden parameters, for the stability and MinMax functions and
vice versa. You must use the
:SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:LOGGing command to set
parameters before you start a logging function using the
:SENSe[n][:CHANnel[m]]:FUNCtion:STATe command.

68 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

command: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:LOGGing

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:LOGGing<wsp><data points>,
<averaging time>[NS|US|MS|S]

description: Sets the number of data points and the averaging time for the logging data acquisition
function.

parameters: Data Points:

Averaging time:

Data Points is the number of samples that are recorded before the
logging mode is completed. Data Points is an integer value.
Averaging time is a time value in seconds.
There is no time delay between averaging time periods. Use
“:SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:STABility?” on
page 70 if you want to use delayed measurement.

If you specify no units for the averaging time value in your command, seconds are used as
the default.

See “:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on page 74 for information on
starting/stopping a data acquisition function.

See “:SENSe[n][:CHANnel[m]]:FUNCtion:RESult?” on page 73 for information on accessing
the results of a data acquisition function.

See “Triggering and Power Measurements” on page 82 for information on how triggering
affects data acquisition functions.

response: none

example: sens1:func:par:logg 64,1ms

command: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:LOGGing?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:LOGGing?

description: Returns the number of data points and the averaging time for the logging data acquisition
function.

parameters: none

response: Returns the number of data points as an integer value and the averaging time, tavg, as a float
value in seconds.

example: sens1:func:par:logg? → +64,+1.00000000E-001<END>

Averaging Time

t

Measurement Running

Measurement Stopped
1 3 52 4 6 87 9

NOTE Setting parameters for the MinMax function sets some parameters,
including hidden parameters, for the stability and logging functions and
vice versa. You must use the
:SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:MINMax command to set
parameters before you start a MinMax function using the
:SENSe[n][:CHANnel[m]]:FUNCtion:STATe command.

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 69

command: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:MINMax

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:MINMax<wsp>

CONTinous|WINDow|REFResh,<data points>

description: Sets the MinMax mode and the number of data points for the
MinMax data acquisition function.

parameters: CONTinous:
WINDow:

REFResh:

continuous MinMax mode

window MinMax mode

WINDow mode has the same function as REFResh
mode. It is included to ensure compatibility.
refresh MinMax mode

Data Points is the number of samples that are recorded in the memory buffer used by the
WINDow and REFResh modes. Data Points is an integer value.
See Chapter 3 of the Agilent N7744A / N7745A Multiport Power Meter User’s Guide, for
more information on MinMax mode.

See “:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on page 74 for information on
starting/stopping a data acquisition function.

See “:SENSe[n][:CHANnel[m]]:FUNCtion:RESult?” on page 73 for information on accessing
the results of a data acquisition function.

See “Triggering and Power Measurements” on page 82 for information on how triggering
affects data acquisition functions.

response: none

example: sens1:func:par:minm WIND,10

command: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:MINMax?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:MINMax?

description: Returns the MinMax mode and the number of data points for the MinMax data acquisition
function.

parameters: none

response: CONT:
WIND:

REFR:

continuous MinMax mode

window MinMax mode

WINDow mode has the same function as REFResh
mode. It is included to ensure compatibility.
refresh MinMax mode

The number of data points is returned as an integer value.

example: sens1:func:par:minm? → WIND,+10<END>

NOTE Setting parameters for the stability function sets some parameters,
including hidden parameters, for the logging and MinMax functions and
vice versa. You must use the
:SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:STABility command to set
parameters before you start a stability function using the
:SENSe[n][:CHANnel[m]]:FUNCtion:STATe command.

70 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

Using data buffers for simultaneous measurement and upload

Enhanced logging functionality is available using two data
buffers for each port. The MPPM ensures there is no time lag
between logging and data availability by using a data buffer with
a capacity of 1M samples for each channel. You can read the
most recent results out of one buffer while the next logging

command: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:STABility

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:STABility<wsp>

<total time>[NS|US|MS|S],<period time>[NS|US|MS|S],<averaging
time>[NS|US|MS|S]

description: Sets the total time, period time, and averaging time for the stability data acquisition function.

parameters: Total time:
Period time:
Averaging time:

The total time from the start of stability mode until it is completed.
A new measurement is started after the completion of every period time.
A measurement is averaged over the averaging time.

The total time should be longer than the period time.
The period time should be longer than the averaging time.
The number of data points is equal to the total time divided by the period time.
Total time, period time, and averaging time are time values in seconds.
If you specify no units in your command, seconds are used as the default.

See “:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on page 74 for information on
starting/stopping a data acquisition function.

See “:SENSe[n][:CHANnel[m]]:FUNCtion:RESult?” on page 73 for information on accessing
the results of a data acquisition function.

See “Triggering and Power Measurements" on page 82 for information on how triggering
affects data acquisition functions.

response: none

example: sens1:func:par:stab 1s,0.1s,0.1s

command: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:STABility?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:STABility?

description: Returns the total time, period time, and averaging time for the stability data acquisition
function.

parameters: none

response: Total time, delay time, and averaging time are float values in seconds.

example: sens1:func:par:stab? → +1.00000000E+000,
+1.00000000E-001,+1.00000000E-001<END>

Averaging Time

Period Time

t

Measurement Running

Measurement Stopped
1 2 3 4 5

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 71

measurement is filling the other buffer.
You can use this to speed up applications with repeated logging
operations. It is especially valuable for monitoring signals over
extended periods to detect transient events.

To use the data buffers, set the logging function to perform a
fixed or indefinite number of "LOOP"s (available from firmware
versions 1.11 and later).

• When LOOP = 1, default logging behavior is selected, that is
measurements are made and the results are written to the
first buffer.

• If LOOP = 0, logging continues, writing the results into
alternate buffers, until you stop it.

• When LOOP = n>1, then upon completion of a logging
measurement, another is started and the results are written
in rotation to the two buffers (first to buffer A, then buffer B,
then buffer A, and so on).
This is repeated until n logging measurements have been
performed. For example, if n=2, both buffers are filled, and
you can upload a total of 2M samples for the channel.

You can also use input triggers to begin individual loops.

The "Index" value is updated to indicate that data from each
LOOP is available for readout.

See also:

:SENSe[n][:CHANnel[m]]:FUNCtion:RESult:INDex?

:SENSe[n][:CHANnel[m]]:FUNCtion:RESult:BUFA?

:SENSe[n][:CHANnel[m]]:FUNCtion:RESult:BUFB?

Example: Programming Streaming Data

1 Set Loop Parameter

2 Configuration: for all ports n

SENS1:FUNC:LOOP 0 - For unlimited loops

SENSn:FUNC:STAT LOGG,STOP - Cleaning up, in case the last run
didn't finish

INITn:CONT 0 - Disable continuous triggering

SENSn:POW:RANG xDBM - Choose range

SENS:POW:UNIT 1 - Fastest upload with units Watts

SENSn:FUNC:PAR:LOGG x,y us - Enter logging samples and avg. time

72 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

3 Enable Logging: for all ports n

4 Check for Measurement Finished

5 Get Logging results for all ports

Stop Loops when finished

SENSn:FUNC:STAT LOGG,STAR - Starts logging, synchronized at start
of final port

SENSn:FUNC:RES:INDex? - Index incremented when loop
finishes

SENSn:FUNC:RES? - Data in binary block form, "LSB"
byte ordering

SENS1:FUNC:LOOP 1

command: :SENSe[n][:CHANnel[m]]:FUNCtion:LOOP

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:LOOP<wsp><value>

description: Sets the number of logging loops

parameters: Number of Loops, an integer value.
• 0 = Endless Streaming
• 1 = 1 (Default)
• 2 = 2 (For 2 Million Points with Buffer

A and B)
• n

response: none

example: SENS1:FUNC:LOOP 0

command: :SENSe[n][:CHANnel[m]]:FUNCtion:LOOP?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:LOOP?

description: Gets the number of logging loops.
For details look at description and example in “Using data buffers for simultaneous
measurement and upload" on page 70.

parameters: none

response: Number of loops: Number of loops is an integer value.
• 0 = Endless Streaming
• 1 = 1 (Default)
• 2 = 2 (For 2 Million Points with Buffer A and B)
• n

example: :SENS1:FUNC:LOOP? → 0

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 73

command: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult:INDex?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult:INDex?

description: Gets the number of already finished logging loops.
For details look at description and example in “Using data buffers for simultaneous
measurement and upload" on page 70.

parameters: none

response: Number of loops: Number of loops is an integer value.

example: sens1:func:res:index? → 1

command: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult?

description: Returns the data array of the last data acquisition function.

parameters: none

response: The last data acquisition function’s data array as a binary block.
For Logging and Stability Data Acquisition functions, one measurement value is a
4-byte-long float in Intel byte order.
For the MinMax Data Acquisition function, the query returns the minimum, maximum and
current power values.
See “Data Types" on page 16 for more information on Binary Blocks.

See “How to Log Results” on page 91 for information on logging using VISA calls. There are
some tips about how to use float format specifiers to convert the binary blocks into float
values.

If you use LabView or Agilent VEE, we recommend using the Agilent N7744A / N7745A
VXIplug&play Instrument Driver to perform the Logging and Stability Data Acquisition
functions.

example: sens1:func:res? → returns a data array for Logging and Stability Data Acquisition functions
sens1:func:res? → #255

Min: 7.24079E-04, Max: 7.24252E-04, Act: 7.24155E-04
returns the minimum, maximum and current power values for the MinMax Data Acquisition
function

command: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult:BUFA?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult:BUFA?

description: Returns the data array of the last data acquisition function in Buffer A.
This works only for Logging and Stability Data Acquisition in the loop mode, not for the
MinMax Data Acquisition.
For details look at description and example in :“Using data buffers for simultaneous
measurement and upload" on page 70

parameters: none

74 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

response: The last data acquisition function's data array as a binary block.
For Logging and Stability Data Acquisition functions, one measurement value is a
4-byte-long float in Intel byte order.
See “Data Types" on page 16 for more information on Binary Blocks.
See “How to Log Results" on page 91 for information on logging using VISA calls. There are
some tips about how to use float format specifiers to convert the binary blocks into float
values.

example: sens1:func:res:bufa? → #255

command: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult:BUFB?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:RESult:BUFB?

description: Returns the data array of the last data acquisition function in Buffer B.
This works only for Logging and Stability Data Acquisition in the loop mode, not for the
MinMax Data Acquisition.
For details look at description and example in :“Using data buffers for simultaneous
measurement and upload" on page 70

parameters: none

response: The last data acquisition function's data array as a binary block.
For Logging and Stability Data Acquisition functions, one measurement value is a
4-byte-long float in Intel byte order.
See “Data Types" on page 16 for more information on Binary Blocks.
See “How to Log Results" on page 91 for information on logging using VISA calls. There are
some tips about how to use float format specifiers to convert the binary blocks into float
values.

example: sens1:func:res:bufb? → #255

command: :SENSe[n][:CHANnel[m]]:FUNCtion:STATe

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:STATe<wsp>

LOGGing|STABility|MINMax,STOP|STARt

description: Enables/Disables the logging, MinMax, or stability data acquisition function mode.

parameters: LOGGing:
STABility:
MINMax:
STOP:
STARt:

Logging data acquisition function
Stability data acquisition function

MinMax data acquisition function
Stop data acquisition function

Start data acquisition function

See “:SENSe[n][:CHANnel[m]]:FUNCtion:PARameter:LOGGing” on page 68 for more
information on the logging data acquisition function.

Stop any functions on all channels before you try to set up a new function. Some parameters
cannot be set until you stop the function.

response: none

example: sens1:func:stat logg,star

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 75

command: :SENSe[n][:CHANnel[m]]:FUNCtion:STATe?

syntax: :SENSe[n][:CHANnel[m]]:FUNCtion:STATe?

description: Returns the function mode and the status of the data acquisition function.

parameters: none

response: NONE

LOGGING_STABILITY

MINMAX
PROGRESS

COMPLETE

No function mode selected

Logging or stability data acquisition function

MinMax data acquisition function
Data acquisition function is in progress

Data acquisition function is complete

example: sens1:func:stat? → LOGGING_STABILITY,COMPLETE<END>

command: :SENSe[n]:[CHANnel[m]]:POWer:ATIMe

syntax: :SENSe[n]:[CHANnel[m]]:POWer:ATIMe<wsp><averaging time>[NS|US|MS|S]

description: Sets the averaging time for the module.

parameters: The averaging time as a float value in seconds.
If you specify no units in your command, seconds are used as the default.

response: none

example: sens1:pow:atim 1s

command: :SENSe[n]:[CHANnel[m]]:POWer:ATIMe?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:ATIMe?

description: Returns the averaging time for the module.

parameters: none

response: The averaging time as a float value in seconds.

example: sens1:pow:atim? → +1.00000000E+000<END>

command: :SENSe[n]:[CHANnel[m]]:POWer:RANGe:AUTO

syntax: SENSe[n]:[CHANnel[m]]:POWer:RANGe:AUTO <wsp><boolean>

description: Enables or disables automatic power ranging for the module.
If automatic power ranging is enabled, ranging is automatically determined by the
instrument. Otherwise, it must be set by the sensn:pow:rang command.

parameters: A boolean value: 0 or OFF: automatic ranging disabled

1 or ON: automatic ranging enabled

response: none

example: sens1:pow:rang:auto 1

command: :SENSe[n]:[CHANnel[m]]:POWer:RANGe:AUTO?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:RANGe:AUTO?

description: Returns whether automatic power ranging is being used by the module.

parameters: none

76 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

response: A boolean value: 0: automatic ranging is not being used.
1: automatic ranging is being used.

example: sens1:pow:rang:auto? → 1<END>

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 77

command: :SENSe[n]:[CHANnel[m]]:POWer:RANGe[:UPPer]

syntax: :SENSe[n]:[CHANnel[m]]:POWer:RANGe[:UPPer]<wsp><value>[DBM]

description: Sets the power range for the module.
The range changes at 10 dBm intervals. The corresponding ranges for linear measurements
(measurements in Watts) is given below:

Range

+10 dBm

0 dBm

−10 dBm

−20 dBm

−30 dBm

Upper Linear
Power Limit
19.999 mW

1999.9 μW

199.99 μW

19.999 μW

1999.9 nW

parameters: The range as a float value in dBm. The number is rounded to the closest multiple of 10,
because the range changes at 10 dBm intervals. Units are in dBm.

response: none

example: sens1:pow:rang -20DBM

command: :SENSe[n]:[CHANnel[m]]:POWer:RANGe[:UPPer]?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:RANGe[:UPPer]?

description: Returns the range setting for the module.

parameters: none

response: The range setting as a float value in dBm

example: sens1:pow:rang? → -2.00000000E+001<END>

command: :SENSe[n]:[CHANnel[m]]:POWer:GAIN:AUTO

syntax: :SENSe[n]:[CHANnel[m]]:POWer:GAIN:AUTO<wsp><value>

description: Set the Auto Gain.

parameters: • 0 = Auto Gain Off.
This is the position for best transient response.

• 1 = Auto Gain On (Default)
This is the Position for best dynamic.

Auto gain only works for averaging times>10μs. For shorter averaging times, the auto gain is
always disabled.
The Auto Gain setting works also in the logging and stability modes, where it also increases
dynamic or enhances transient response.

response: none

example: sens:pow:gain:auto 1

command: :SENSe[n]:[CHANnel[m]]:POWer:GAIN:AUTO?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:GAIN:AUTO?

description: Get the Auto Gain status.

78 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

parameters: none

response: • 0 = Auto Gain Off.
This is the position for best transient response.

• 1 = Auto Gain On (Default)
This is the Position for best dynamic.

example: sens:pow:gain:auto? → 1

command: :SENSe[n]:[CHANnel[m]]:POWer:REFerence

syntax: :SENSe[n]:[CHANnel[m]]:POWer:REFerence<wsp>

TOMODule|TOREF,<value>PW|NW|UW|MW|Watt|DBM|DB|MDB

description: Sets the sensor reference value.

parameters: TOMODule:

TOREF:

Sets the reference value in dB used if you choose measurement
relative to another slot
Sets the reference value in Watts or dBm if you choose measurement
relative to a constant reference value

The reference as a float value.

You must append a unit type

• dB if you use TOMODule or
• Watts or dBm if you use TOREF.

The two reference values are completely independent. When you change the reference
mode using the command “:SENSe[n]:[CHANnel[m]]:POWer:REFerence:STATe:RATio” on
page 79, the instrument uses the last reference value entered for the selected reference
mode.

response: none

example: sens1:pow:ref tomod,-40DB

command: :SENSe[n]:[CHANnel[m]]:POWer:REFerence?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:REFerence?<wsp>TOMODule|TOREF

description: Returns the sensor reference value.

parameters: TOMODule:

TOREF:

Returns the reference value in dB used if you choose measurement
relative to another slot
Returns the reference value in Watts or dBm if you choose
measurement relative to a constant reference value

response: The reference as a float value.

example: sens1:pow:ref? toref → +1.00000000E-006<END>

command: :SENSe[n]:[CHANnel[m]]:POWer:REFerence:DISPlay

syntax: :SENSe[n]:[CHANnel[m]]:POWer:REFerence:DISPlay

description: Takes the input power level value as the reference value.

parameters: none

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 79

response: none

example: sens1:pow:ref:disp

command: :SENSe[n]:[CHANnel[m]]:POWer:REFerence:STATe

syntax: :SENSe[n]:[CHANnel[m]]POWer:REFerence:STATe<wsp><boolean>

description: Sets the measurement units to relative or absolute units.

parameters: A boolean value: 0 or OFF: absolute

1 or ON: relative

response: none

example: sens1:pow:ref:stat 1

command: :SENSe[n]:[CHANnel[m]]:POWer:REFerence:STATe?

syntax: :SENSe[n]:[CHANnel[m]]POWer:REFerence:STATe?

description: Inquires whether the current measurement units are relative (dB) or absolute (Watts or
dBm).

parameters: none

response: A boolean value: 0: absolute

1: relative

example: sens1:pow:ref:stat? → 1<END>

command: :SENSe[n]:[CHANnel[m]]:POWer:REFerence:STATe:RATio

syntax: :SENSe[n]:[CHANnel[m]]POWer:REFerence:STATe:RATio<wsp>

<slot number>|255|TOREF,<channel number>

description: Selects the reference for the module.

parameters: slot number:
255 or TOREF:
channel number:

an integer value representing the slot number you want to reference
results are displayed relative to an absolute reference
an integer value representing the channel number you want to
reference. For the Multiport Power Meter the channel number is
always 1.

If you want to reference another power sensor, use an integer value corresponding to the
slot for the first parameter and an integer value of 1 for the channel value.
If you want to use an absolute reference, use TOREF as the first parameter and any integer
value as the second parameter.

response: none

examples: sens1:pow:ref:stat:rat 2,1
sens1:pow:ref:stat:rat TOREF,1

References slot 2. channel 1
References an absolute reference

command: :SENSe[n]:[CHANnel[m]]:POWer:REFerence:STATe:RATio?

syntax: :SENSe[n]:[CHANnel[m]]POWer:REFerence:STATe:RATio?

description: Returns the reference setting for the module.

parameters: none

80 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

response: results are displayed relative to an absolute reference or to the current power reading from
another slot.

examples: sens1:pow:ref:stat:rat? → +255,+0<END>

sens1:pow:ref:stat:rat? → +2,+1<END>

results are displayed relative
to an absolute reference
results are displayed relative
to slot 2

command: :SENSe[n]:[CHANnel[m]]:POWer:UNIT

syntax: :SENSe[n]:[CHANnel[m]]:POWer:UNIT<wsp>DBM|0|Watt|1

description: Sets the sensor power unit

parameters: An integer value: 0: dBm

1: Watt

or DBM or Watt

response: none

example: sens1:pow:unit 1

command: :SENSe[n]:[CHANnel[m]]:POWer:UNIT?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:UNIT?

description: Queries the current sensor power unit

parameters: none

response: An integer value: 0: Current power units are dBm.
1: Current power units are Watts.

example: sens1:pow:unit? → +1<END>

command: :SENSe[n]:[CHANnel[m]]:POWer:UNIT:ALL:CSV?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:UNIT:ALL:CSV?

description: Queries the power unit for all ports of the instrument, returned in csv data format.

parameters: none

response: Integer values, separated by commas:
• 0: Current power units are dBm.
• 1: Current power units are Watts.

example: sens1:pow:unit:all:csv? → 1,1,1,1,1,1,1,1,<END>

command: :SENSe[n]:[CHANnel[m]]:POWer:WAVelength

syntax: :SENSe[n]:[CHANnel[m]]:POWer:WAVelength<wsp><value>|MIN|MAX|DEF
[PM|NM|UM|MM|M]

description: Sets the sensor wavelength.

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 81

parameters: The wavelength as a float value in meters.

Also allowed are: MIN: minimum programmable value
MAX: maximum programmable value
DEF: This is not the preset (*RST) default value but is half
the sum of, the minimum programmable value and the
maximum programmable value

response: none

example: sens1:pow:wav 1550nm

command: :SENSe[n]:[CHANnel[m]]:POWer:WAVelength?

syntax: :SENSe[n]:[CHANnel[m]]:POWer:WAVelength?[<wsp>MIN|MAX|DEF]

description: Inquires the current sensor wavelength.

parameters: none

Also allowed are: MIN: minimum programmable value
MAX: maximum programmable value
DEF: This is not the preset (*RST) default value but is half
the sum of, the minimum programmable value and the
maximum programmable value

response: The wavelength as a float value in meters.

example sens1:pow:wav? → +1.55000000E-006<END>

82 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

Triggering - The TRIGger Subsystem

The TRIGger Subsystem allows you to configure how the
instrument reacts to incoming or outgoing triggers.

Table 1 Triggering and Power Measurements

Hardware
Triggering

Software Triggering Data Acquisition Functions

sens:func:stat

trig:inp init:imm init:cont MINMax LOGGing|STABility

IGNore One power
measurement is
performed.

Automatically performs power
measurements.

Automatically performs power
measurements until the
function is finished.

SMEasure Every hardware trigger starts a new power
measurement.

Every hardware trigger starts a
new power measurement until
the function is finished.

CMEasure The first hardware trigger starts
the function. Subsequent
power measurements are
automatically performed until
the function is finished.

Table 2 Generating Output Triggers from Power Measurements

Hardware
Triggering

Software Triggering Data Acquisition Functions

sens:func:stat

trig:outp init:imm init:cont MINMax LOGGing|STABility

DISabled An output trigger will never be generated.

AVGover An output trigger is generated for every new power measurement when the
averaging time period finishes.

Applies for all subsequent
data acquisition functions.

MEASure An output trigger is generated for every new power measurement when the
averaging time period begins.

Applies for all subsequent
data
acquisition functions.

command: :TRIGger[n][:CHANnel[m]]:INPut

syntax: :TRIGger[n][:CHANnel[m]]:INPut<wsp><trigger response>

description: Sets the incoming trigger response and arms the module.

Measurement Operations & Settings 4

Multi-Port Power Meter Programming Guide 83

parameters: IGNore:
SMEasure:

CMEasure:

Ignore incoming trigger.
Start a single measurement. If a measurement function is active, see
“:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on page 74, one sample is
performed and the result is stored in the data array, see
“:SENSe[n][:CHANnel[m]]:FUNCtion:RESult?” on page 73.
Start a complete measurement. If a measurement function is active,
see“:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on page 74, a complete
measurement function is performed.

You must prearm a measurement function before an action can be triggered:
First, set the incoming trigger response.
Then:
prearm a measurement function using “:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on
page 74.
NOTE: If a trigger signal arrives at the Input Trigger Connector at the same time that the
:SENSe[n][:CHANnel[m]]:FUNCtion:STATe command is executed, the first measurement
value is invalid. You should always discard the first measurement value in this case.
The module performs the appropriate action when it is triggered.

response: none

example: trig1:inp ign

If you use the VXIplug&play Instrument Driver, you can trigger power measurements.

command: :TRIGger[n][:CHANnel[m]]:INPut?

syntax: :TRIGger[n][:CHANnel[m]]:INPut?

description: Returns the incoming trigger response.

parameters: none

response: IGNore:
SMEasure:

CMEasure:

Ignore incoming trigger.
Start a single measurement. If a measurement function is active, see
“:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on page 74, one sample is
performed and the result is stored in the data array, see
“:SENSe[n][:CHANnel[m]]:FUNCtion:RESult?” on page 73.
Start a complete measurement. If a measurement function is active, see
“:SENSe[n][:CHANnel[m]]:FUNCtion:STATe” on page 74, a complete
measurement function is performed.

example: trig1:inp? → ign<END>

command: :TRIGger[n][:CHANnel[m]]:OUTPut

syntax: :TRIGger[n][:CHANnel[m]]:OUTPut

description: Specifies when an output trigger is generated and arms the module.

parameters: DISabled:
AVGover:
MEASure:

Never.
When averaging time period finishes.
When averaging time period begins.

response: none

example: trig1:outp dis

84 Multi-Port Power Meter Programming Guide

4 Measurement Operations & Settings

command: :TRIGger[n][:CHANnel[m]]:OUTPut?

syntax: :TRIGger[n][:CHANnel[m]]:OUTPut?

description: Returns the condition that causes an output trigger.

parameters: none

response: DISabled:
AVGover:
MEASure:

Never.
When averaging time period finishes.
When averaging time period begins.

example: trig1:outp? → dis<END>

command: :TRIGger:CONFiguration

syntax: :TRIGger:CONFiguration<wsp><triggering mode>

description: Sets the hardware trigger configuration with regard to Output and Input Trigger Connectors.

parameters: 0 or DISabled: Trigger connectors are disabled.

1 or DEFault: The Input Trigger Connector is activated, the incoming trigger response
for each slot “:TRIGger[n][:CHANnel[m]]:INPut” on page 82 determines
how each slot responds to an incoming trigger, all slot events (see
“:TRIGger[n][:CHANnel[m]]:OUTPut” on page 83) can trigger the
Output Trigger Connector.

2 or PASSthrough: The same as DEFault but a trigger at the Input Trigger Connector
generates a trigger at the Output Trigger Connector automatically.

3 or LOOPback: The same as PASSthrough. This is included for compatibility reasons.

response: none

example: trig:conf dis

command: :TRIGger:CONFiguration?

syntax: :TRIGger:CONFiguration?

description: Returns the hardware trigger configuration.

parameters: none

response: DIS:
DEF:

PASS:

LOOP:

Trigger connectors are disabled.
The Input Trigger Connector is activated, the incoming trigger response for
each slot “:TRIGger[n][:CHANnel[m]]:INPut” on page 82 determines how each
slot responds to an incoming trigger, all slot events (see
“:TRIGger[n][:CHANnel[m]]:OUTPut” on page 83) can trigger the Output
Trigger Connector.
The same as DEFault but a trigger at the Input Trigger Connector generates a
trigger at the Output Trigger Connector automatically.
The same as PASSthrough. This is included for compatibility reasons.

example: trig:conf? → DEF<END>

85

Agilent N7744A / N7745A Multiport Power Meter
Programming Guide

Agilent Technologies

5
VISA Programming Examples

These programming examples are implemented using MS Developer
Studio. Regardless of the programming environment you use, keep the
following in mind:

• The resultant application is a "console application"

• Make sure the header files visa.h and visatype.h are included.

• Make sure the library path includes visa32.lib

• Ensure that the PATH environment variable allows loading visa32.dll.

The programming examples do not cover the full command set for the
instruments. They are intended only as an introduction, how to program
the instrument using VISA library calls.

The VISA calls used, are explained in detail in the VISA User’s Guide.

TIP: Additional programming examples are provided on the Support Disk
CD-ROM 00000-00000

How to Use VISA Calls 86

How to Measure Power using FETCh and READ 88

How to Log Results 91

NOTE Never use VISA calls and the Agilent N7744A / N7745A VXIplug&play
Instrument Driver in the same program.

86 Multi-Port Power Meter Programming Guide

5 VISA Programming Examples

How to Use VISA Calls

The following example demonstrates how to communicate using
VISA calls. Also, the use of instrument identification commands
is demonstrated.

#include <stdio.h>

#include <stdlib.h>

#include <visa.h>

/* This function checks and displays errors, using the error query of the instrument;
Call this function after every command to make sure your commands are correct */

void checkError(ViSession session, ViStatus err_status)

 {

 ViStatus error;

 ViChar errMsg[256];

 /* queries what kind of error occurred */

 error = viQueryf(session,"%s\n","%t","SYST:ERR?",errMsg);

 /*if this command times out, a system error is probable;

 check the GPIB bus communication */

 if (error == VI_ERROR_TMO)

 {

 printf("System Error!\n") ;

 exit(1);

 }

 else

 {

 /* display the error number and the error message */

 if(errMsg[0] != '+')

 printf("error:%ld --> %s\n", err_status,errMsg) ;

 }

 }

void main (void)

 {

 ViStatus errStatus; /*return error code from visa call */

 ViSession defaultRM; /*default visa resource manager variable*/

 ViSession vi; /*current session handle */

 ViChar replyBuf[256]; /*buffer holding answers from the instrument*/

 ViChar c;

 /* Initialize visa resource manger */

 errStatus = viOpenDefaultRM (&defaultRM);

 if(errStatus < VI_SUCCESS)

 { printf("Failed to open VISA Resource manager\n");

 exit(errStatus);

 }

 /* Open session to GPIB device at address 20; the VI_NULL parameters 3,4

 are mandatory and not used for VISA 1.0*/

VISA Programming Examples 5

Multi-Port Power Meter Programming Guide 87

 errStatus = viOpen (defaultRM, "GPIB::20::INSTR", VI_NULL,VI_NULL,&vi);

 if(errStatus < VI_SUCCESS)

 { printf("Failed to open instrument\n");

 exit(errStatus);

 }

 /* set timeout to 20 sec; this should work for all commands except for zeroing or READ commands with
averaging times greater than the timeout */

 errStatus = viSetAttribute(vi,VI_ATTR_TMO_VALUE,20000);

 checkError(vi,errStatus);

 /* get the identification string of the instrument mainframe*/

 errStatus = viQueryf(vi,"%s\n","%t","*IDN?",replyBuf);

 if(errStatus < VI_SUCCESS)

 { checkError(vi,errStatus); }

 else printf("%s",replyBuf);

 /* identify the installed modules */

 errStatus = viQueryf(vi,"%s\n","%t","*OPT?",replyBuf);

 if(errStatus < VI_SUCCESS)

 { checkError(vi,errStatus); }

 else printf("%s",replyBuf);

 /* get information about the available options of a slot */

 errStatus = viQueryf(vi,"%s","%t","SLOT1:OPT?\n",replyBuf);

 if(errStatus < VI_SUCCESS)

 { checkError(vi,errStatus); }

 else printf("%s",replyBuf);

 /*loop, until a key is pressed */

 while(!scanf("%c",&c));

 /*close the session */

 viClose(vi);

 }

88 Multi-Port Power Meter Programming Guide

5 VISA Programming Examples

How to Measure Power using FETCh and READ

The example shows the difference between a "FETCh" and a
"READ" command.

Install a power meter in Slot 1, before executing this example.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <visa.h>

/* function prototypes for this examples */

/* function for a simple error handling explained in example 1 */

void checkError(ViSession session, ViStatus err_status);

void main (void)

 {

 ViStatus errStatus; /* returned error code from visa call */

 ViSession defaultRM; /* default visa resource manager variable */

 ViSession vi; /* current session handle */

 ViChar replyBuf[256]; /* buffer holding answers of the instrument*/

 ViChar compBuf[256]; /* buffer used for comparsion */

 ViChar c; /* used in the keyboard wait loop */

 ViReal64 averagingTime; /* averaging time */

 ViInt32 i; /* loop counter */

 errStatus = viOpenDefaultRM (&defaultRM);

 if(errStatus < VI_SUCCESS)

 {

 printf("Failed to open VISA Resource manager\n");

 exit(errStatus);

 }

 errStatus = viOpen (defaultRM, "GPIB::20::INSTR", VI_NULL,VI_NULL,&vi);

 if(errStatus < VI_SUCCESS)

 {

 printf("Failed to open instrument\n");

 exit(errStatus);

 }

 /*set timeout to 20 sec; this should work for all commands

 except zeroing */

 errStatus = viSetAttribute(vi,VI_ATTR_TMO_VALUE,20000);

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* make sure that the reference is not used */

 errStatus = viPrintf(vi,"SENS1:CHAN1:POW:REF:STATE 0\n");

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* clear the error queue */

VISA Programming Examples 5

Multi-Port Power Meter Programming Guide 89

 errStatus = viPrintf(vi,"*CLS\n");

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* turn auto range on */

 errStatus = viPrintf(vi,"SENS1:CHAN1:POW:RANGE:AUTO 1\n");

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* change the power unit to watt */

 errStatus = viPrintf(vi,"SENS1:CHAN1:POW:UNIT W\n");

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /*set the averaging time for measuring to 0.5s*/

 averagingTime = 0.5;

 errStatus = viPrintf(vi,"SENS1:CHAN1:POW:ATIME %f\n",averagingTime);

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* turn continous measuring off */

 errStatus = viPrintf(vi,"INIT1:CHAN1:CONT 0\n");

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* trigger a measurement */

 errStatus = viPrintf(vi,"INIT1:CHAN1:IMM\n");

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* read 10 values and display the result; */

 for (i = 0; i < 10; i++)

 {

 /* Now because an averaged value is available, the value will be fetched */

 errStatus = viQueryf(vi,"%s","%s","FETCH1:CHAN1:POW?\n",replyBuf);

 if (errStatus < VI_SUCCESS) checkError(vi,errStatus);

 /* two consecutive values are compared; if they are equal it will be marked; because no evaluation is triggered,
all values will be the same */

 if(i)

 { if(!strcmp(compBuf,replyBuf))

 { printf("Same:%s\n",replyBuf); }

 else printf("New:%s\n",replyBuf);

 }

 else printf("First:%s\n",replyBuf);

 strcpy(compBuf,replyBuf);

 }

 /* now the read command is used in the same manner to demonstrate the difference between fetch and read
*/

 /* read also 10 values, compare them and display the result; */

 for (i = 0; i < 10; i++)

 {

 /* In comparision to the "FETCH" command, the "READ" command implies triggering a measurement.
Make sure the timeout set is greater than the adjusted averaging time, so that the READ command will not time
out; */

 /* send the read command */

 errStatus = viQueryf(vi,"READ1:CHAN1:POW?\n","%t",replyBuf);

90 Multi-Port Power Meter Programming Guide

5 VISA Programming Examples

 checkError(vi,errStatus);

 if(i)

 {

 if(!strcmp(compBuf,replyBuf)) printf("Same:%s",replyBuf);

 else printf("New :%s",replyBuf);

 }

 else printf("\nFirst:%s",replyBuf);

 /*copy new value to compare buffer*/

 strcpy(compBuf,replyBuf);

 }

 /* loop, until a key is pressed */

 while(!scanf("%c",&c));

 checkError(vi,errStatus);

 /* close the session */

 viClose(vi);

}

void checkError(ViSession session, ViStatus err_status)

 { ViStatus error;

 ViChar errMsg[256];

 error = viQueryf(session,"SYST:ERR?\n","%t",errMsg);

 if (error == VI_ERROR_TMO)

 {

 printf("System Error!\n") ;

 exit(1);

 }

 else

 {

 /* only errors should be displayed */

 if(errMsg[0] != '+')

 printf("error:%ld --> %s\n", err_status,errMsg) ;

 }

 }

VISA Programming Examples 5

Multi-Port Power Meter Programming Guide 91

How to Log Results

This example demonstrates how to use logging functions.

Install a Power Sensor in Slot 1, before executing this example.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <visa.h>

#define MAX_LOG_VALUES 4000 /* max number of values the instrument is able to log */

#define HEADER_SIZE 7 /* includes 6 bytes header and 1 CR */

/* function prototypes for this examples/*

/* function for a simple error handling explained in example 1 */

void checkError(ViStatus session, ViStatus err_status);

/* initialize the visa interface */

ViStatus InitVisa (ViSession *iHandle);

/*globals*/

static unsigned char logBuffer[MAX_LOG_VALUES * sizeof(ViReal64) + HEADER_SIZE];

/*array for the float results */

static ViReal32 logResults[MAX_LOG_VALUES];

void main (void)

 {

 ViStatus errStatus; /* returned error code from visa call */

 ViSession vi; /* current session handle */

 ViChar replyBuf[256]; /* buffer holding answers from the
instrument */

 ViChar c; /* used in the keyboard wait loop */

 ViInt32 slot; /* slot number where the power meter is plugged */

 ViInt32 chan; /* channel to be logged */

 ViInt32 i; /* loop counter */

 ViInt32 noOfValues; /* number of values to be logged*/

 ViReal64 averagingTime; /* aveaging time used in a logging cycle */

 ViPChar replySubStr; /* pointer to a substring of the instruments reply */

 ViInt32 noOfDigits; /*number of digits, specifing the amount data

 to be read */

 ViUInt32 retCnt; /* returns the number of bytes read calling viRead */

 errStatus = InitVisa(&vi);

 if(errStatus < VI_SUCCESS)

 {

 exit(errStatus);

 }

92 Multi-Port Power Meter Programming Guide

5 VISA Programming Examples

 /* clear instrument error queue */

 errStatus = viPrintf(vi,"*CLS\n");

 checkError(vi,errStatus);

 /* turn auto range on */

 errStatus = viPrintf(vi,"SENS1:CHAN1:POW:RANGE:AUTO 1\n");

 checkError(vi,errStatus);

 /* send the command sequence for continuous logging */

 slot = 1;

 chan = 1;

 noOfValues = 100; /* log 100 values */

 averagingTime = 0.02; /* set averaging time to 20ms */

 viPrintf(vi,"SENS%1d:CHAN%1d:FUNC:PAR:LOGG %d,%f\n",

 slot,

 chan,

 noOfValues,

 averagingTime);

 checkError(vi,errStatus);

 /* start logging */

 viPrintf(vi,"SENS%1d:CHAN%1d:FUNC:STAT LOGG,START\n",slot,chan);

 checkError(vi,errStatus);

 /* to display the results, logging should be completed */

 /* the instrument has to be polled about the progress of the logging */

 do

 {

 errStatus = viQueryf(vi,"SENS%1d:CHAN%1d:FUNC:STATE?\n","%t",slot,chan,replyBuf);

 /* if an error occurs break the loop */

 if (errStatus < VI_SUCCESS)

 {

 checkError(vi,errStatus);

 break;

 }

 /* find the substring "COMPLETE" in the reply of the instrument */

 replySubStr = replyBuf;

 while(*replySubStr)

 {

 if(!strncmp(replySubStr,"COMPLETE",strlen("COMPLETE"))) break;

 replySubStr ++;

 }

 }while (!*replySubStr); /*substring "COMPLETE" not found */

 /*continue polling */

 /* The instrument returns the logging result in the following format: #xyyyffff...; the first digits after the
hash denotes the number of ascii digits following (y) ; y specifies the number of binary data following; "ffff"
represent the 32Bit floats as log result. */

 /* get the result */

 errStatus = viPrintf(vi,"SENS%1d:CHAN%1d:FUNC:RES?\n",slot,chan);

 /* only query an error, if there is one, else the query will be interrupted ! */

VISA Programming Examples 5

Multi-Port Power Meter Programming Guide 93

 if(errStatus < VI_SUCCESS)checkError(vi,errStatus);

 /* read the binary data */

 errStatus = viRead(vi, logBuffer, MAX_LOG_VALUES * sizeof(ViReal32) + HEADER_SIZE, &retCnt);

 checkError(vi,errStatus);

 if(logBuffer[0] != '#')

 {

 printf("invalid format returned from logging\n");

 exit(1);

 }

 else

 {

 noOfDigits = logBuffer[1] -'0';

 memcpy(logResults, &logBuffer[2 + noOfDigits],
 MAX_LOG_VALUES * sizeof(ViReal32));

 }

 /* stop logging */

 viPrintf(vi,"SENS%1d:CHAN%1d:FUNC:STAT LOGG,STOP\n",slot,chan);

 checkError(vi,errStatus);

 /* display the values using %g, a float format specifier, you may also use %e or %f */

 for (i = 0; i < noOfValues; i++)

 printf("\t%g\n",logResults[i]);

 /* loop, until a key is pressed */

 while(!scanf("%c",&c));

 /* close the session */

 viClose(vi);

 }

void checkError(ViStatus session, ViStatus err_status)

 {

 ViStatus error;

 ViChar errMsg[256];

 error = viQueryf(session,"SYST:ERR?\n","%t",errMsg);

 if (error == VI_ERROR_TMO)

 {

 printf("System Error!\n") ;

 exit(1);

 }

 else

 {

 /* only errors should be displayed */

 if(errMsg[0] != '+')

 {

 printf("error:%ld --> %s\n", err_status,errMsg) ;

 if

94 Multi-Port Power Meter Programming Guide

5 VISA Programming Examples

 ((!strncmp(errMsg,
 "-303,\"Module slot empty or slot / channel invalid\"",
 strlen("-303,\"Module slot empty or slot / channel invalid\"")))

 ||

 (!strncmp(errMsg,
 "-301,\"Module doesn't support this command (StatCmdUnknown)\"",
 strlen(
 "-301,\"Module doesn't support this command (StatCmdUnknown)\""))))

 {

 printf("No power meter in slot 1 so exiting\n\n");

 exit(1);

 }

 }

 }

 }

ViStatus InitVisa (ViSession *iHandle)

 {

 ViStatus errStatus; /* returned error code from visa call */

 ViSession defaultRM; /* default visa resource manager variable */

 /* First get initialized the visa library (see example 1) */

 errStatus = viOpenDefaultRM (&defaultRM);

 if (errStatus < VI_SUCCESS)

 printf("Failed to open VISA Resource manager\n");

 /* Open session to GPIB device at address 20; */

 errStatus = viOpen (defaultRM, "GPIB::20::INSTR",
 VI_NULL,VI_NULL,iHandle);

 if (errStatus < VI_SUCCESS)

 printf("Failed to open instrument\n");

 return errStatus;

 }

95

Agilent N7744A / N7745A Multiport Power Meter
Programming Guide

Agilent Technologies

6
The Agilent 816x VXIplug&play
Instrument Driver

This chapter gives you extra information about installing and getting
started with the Agilent 816x VXIplug&play instrument driver.

There are details about opening and closing an instrument session, data
types and constants used, error handling, and the programming
environments supported.

Installing the Agilent 816x Instrument Driver 96

Using Visual Programming Environments 100

Getting Started with Agilent VEE 100

Getting Started with LabView 102

Getting Started with LabWindows 105

Features of the Agilent 816x Instrument Driver 106

Directory Structure 107

Opening an Instrument Session 108

Closing an Instrument Session 109

VISA Data Types and Selected Constant Definitions 110

Error Handling 111

Introduction to Programming 113

Example Programs 113

VISA-Specific Information 113

Development Environments 113

Online Information 115

Lambda Scan Applications 116

How to Perform a Multi-Frame Lambda Scan Application 118

NOTE The N7744A/45A is supported by the standard 816x Plug & Play
Instrument Driver version 4.2.1 and higher.

IVI-COM and IVI-C drivers are also available for download at
http://www.agilent.com/find/ivi-com

96 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

Installing the Agilent 816x Instrument Driver

The Agilent 816x VXIplug&play Instrument Driver comes as a
self-extracting archive with an installation wizard. The
installation wizard extracts all the files to preset destinations,
asking you appropriate questions as it does so.

You install the driver by running the executable hp816x.exe.

1 Run hp816x.exe,

The welcome screen for the InstallShield Wizard used to
install the Agilent 816x VXIplug&play Instrument Driver is
displayed.

2 Press Next> to continue.

Specify the folder to which files will be saved.

3 Press Next> to continue.

Files are copied and extracted.

If necessary, a dialog requests your premission to overwrite
existing files.

The vesrion number of the instrument driver is displayed.

You may now elect to skip installation at this PC. Copy the
extracted disk images to floppy, and use them to install the
instrument driver at another PC.

4 Press OK> to continue.

If you are not an administrator, you see a VXIplug&play
window, and a message telling you that if you proceed with
the installation, some information will NOT be visible to all
users. This means that any program menu options will only
be available to the user that performed the installation. If
you are the administrator all program menu options will be
visible for all users.

If you see the message in Figure 1, press Yes to install the
driver or press No and contact your administrator.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 97

Figure 1 Non-Administrator Installation Pop-Up Box

5 You see a message, as shown in Figure 2, advising you to
close the programs that you have running.

Figure 2 Welcome Screen

6 Close these programs and press Next> to continue. Then, you
see a message informing you if VISA is installed on your PC.

NOTE If Agilent 816x VXIplug&play Instrument Driver is already installed on your
system, you see a message asking you if you want to uninstall the old
version.
Press Yes, if required, then wait until you see a message telling you that
the uninstall has been successful. You may be asked for permission to
remove shared files.
Then press OK to continue.

NOTE If you do not have VISA installed, press Cancel to temporarily exit this
installation procedure; install VISA on your PC, then run hp816x.exe again.

98 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

If you have VISA installed, press Next> to continue. You see a
window that requests you to choose your Setup.

7 You can choose a Typical, Compact, or Custom Setup. Choose
a setup option and press Next> to continue.

Figure 3 Customizing Your Setup

Select the components you want to install.

8 Press Next> to continue.

Specify the program folder required; the default choice is
VXIPNP.

9 Press Next> to continue.

Review the settings that you have specified.

If you want to review or change any settings press Back>

10 Press Next> to continue.

The instrument driver is installed.

NOTE If you choose the Custom Setup, you may choose the options you want to
install from the screen in Figure 3. These options are:

• VxiPnP Driver, you may choose to install the Agilent 816x
VXIplug&play instrument driver.

• Examples, you may choose to install Visual Basic, Visual C, LabView,
Agilent VEE and VISA programming examples.

• Help Files, you may choose to install the help file.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 99

Figure 4 Program Folder Item Options

You may elect to:

• Automatically launch the Readme file, which provides the
instrument driver’s version history

• Include a help icon in your program folder, which
launches on-line documentation for the instrument driver

11 Press Finish to complete installation

If you elected to automatically launch the Readme file, it is
displayed.

A webpage explaining how to get started with the Agilent
816x VXIplug&play Instrument Driver using Agilent VEE or
LabView appears.

100 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

Using Visual Programming Environments

Getting Started with Agilent VEE

Agilent Technologies Visual Engineering Environment (Agilent
VEE) is a visual programming language optimized for
instrument control applications. To develop programs in Agilent
VEE, you connect graphical ‘objects’ instead of writing lines of
code. These programs resemble easy-to-understand block
diagrams with lines.

Agilent VEE allows you to leverage your investment in textual
languages by integrating with languages such as C, C++, Visual
Basic, FORTRAN, Pascal, and Agilent BASIC.

Agilent VEE controls GPIB, VXI, Serial, PC Plug-in, and LAN
instruments directly over the interfaces or by using instrument
drivers.

Agilent VEE supports VXIplug&play drivers in the WIN, WIN95,
WINNT, and Agilent-UX frameworks. In addition, versions 3.2
and above of Agilent VEE support the graphical Function Panel
interface, providing a function tree of the hierarchy of the
driver.

NOTE This appendix assumes that you are using Windows 95. If you are using
Windows NT, please replace every reference to win95 with winnt.
Windows 95 and Windows NT are registered trademarks of Microsoft
corporation.

Agilent VEE automatically calls the initialize and close functions to
perform automatic error checking.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 101

GPIB Interfacing in Agilent VEE

Agilent VEE supports interfacing with an instrument from a
GPIB card. Before you can do this, you must do the following:

1 Select Instrument Manager from the I/O menu.

2 Double-click on the Add button to bring up the Device
Configuration screen, see Figure 5.

Figure 5 Device Configuration

3 Enter the following information:

• Name: enter hp816x.

• Interface: GPIB

• Address: Enter the GPIB address of your GPIB interface
board (the default is 7). Append the GPIB address of your
instrument (the default is 20).

• Gateway: This host.

4 Press Advanced I/O Config ..., the Advanced Device Configuration
box pops up. Select the Plug&play Driver tab, the box in
Figure 6 appears.

NOTE To find out or change the instrument’s GPIB address, press the Config
hardkey on the instrument’s front panel and choose GPIB address. The
instrument’s GPIB address appears, you may edit it if you wish.

102 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

AC

Figure 6 Advanced Device Configuration - Plug&play Driver

• Select hp816x from the Plug&play Driver Name drop-down list.

If you do not see this driver in the list, the driver has not
installed properly.

5 Enter the Parameters to the init() call by entering
GPIB::xx::INSTR where xx is your instrument’s GPIB
address.

6 Select whether to Perform Reset or to Perform Identification Query
whenever Agilent VEE opens the instrument for interaction.

7 Confirm the selections pressing the OK button.

8 Return to the Instrument Manager screen and press the Save
Config to save the configuration.

Getting Started with LabView

The 32-bit Agilent 816x driver can be used with LabView 5.0 and
above. LabView 5.0 is a 32-bit version of LabView which runs on
Windows 95 and Windows NT.

NOTE If you do not see this driver in the list, the driver has not installed properly.

NOTE 20 is the default GPIB address for your instrument.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 103

After installing the Agilent 816x instrument driver, the driver
must be converted for use with LabView.

1 To convert the driver follow these steps:

a If you are updating from a previously installed driver,
perfrorm the following three steps:

b Locate the LabView program folder. By default, this is
<drive>:Program Files\National Instruments\LabView.

c This folder contains a subfolder named instr.lib.

2 Run LabView.

3 On the first window that appears, click on the Solution
Wizards button.

4 The LabView Solution Wizard window appears, click on the
Launch Wizard… button.

5 The Welcome to Instrument Wizard! window appears, click
on the Next > button.

6 The Search for Instruments… window appears, click on the
Next > button. Check that the options are the same as
displayed in the figure below:

Figure 7 Search for GPIB Instruments

7 Click on the Next > button.

8 The Identify Found Instruments… window appears, click on
the Next > button.

104 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

9 The Update VXI Plug and Play Drivers window appears,
select HP816x, and click on the Convert button.

10 The Manage Instrument Drivers window appears, click on
the Finish button.

11 The first window appears again, click on the New VI button.

12 Select File and then select Convert CVI FP file.

13 The Select a CVI Function Panel file window appears, locate
the hp816x.fp file, which is normally installed into the path
<drive>:VXIPNP\winXX\hp816x, where XX stands for NT, or
95.

14 Press Open.

15 The CVI Function Panel Converter window appears.

16 Click on Browse… and browse to the following Destination
Directory: \LabView\instr.lib\hp816x\hp816x.llb

17 Press Save.

18 Press Options…, the FP Conversion Options window
appears. Check that the options are the same as
displayed in the figure below:.

Figure 8 FP Conversion Options Box

NOTE You must check the Add Front Panel Controls for Size of Array Parameters
box. There will be a front panel control created for each VI that requires
you to assign the array size.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 105

19 Press OK. The CVI Function Panel Converter window
appears.

20 Press OK.

21 The Select a library window appears. Browse to <drive>:\
vxipnp\winXX\Bin, where XX stands for NT, or 95, select
hp816x_32.dll and click on Open.

22 The CVI Conversion Status window is displayed until the
conversion is completed.

Getting Started with LabWindows

The 32-bit Agilent 816x VXIplug&play Instrument Driver can be
used with LabWindows 4.0 and above. LabWindows 4.0 is a
32-bit version of LabWindows which runs on Windows 95 and
Windows NT.

To access the functions of the Agilent 816x VXIplug&play
Instrument Driver from within LabWindows, select INSTRUMENT
from the main menu, and then select the LOAD... submenu item.

In the file selection dialog box which appears, select hp816x.fp
and click on the OK button. LabWindows loads the function
panel and instrument driver.

The driver now appears as a selection on the Instrument menu,
and can be treated like any LabWindows driver.

NOTE You must use the 32-bit version of the Agilent 816x VXIplug&play
Instrument Driver with LabView 5.0.

NOTE LabView is a trademark of National Instruments Corporation.

NOTE LabWindows is a trademark of National Instruments Corporation.

106 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

Features of the Agilent 816x Instrument Driver

The Agilent 816x VXIplug&play instrument driver conforms to
all aspects of the VXIplug&play driver standard which apply to
conventional rack and stack instruments.

The following features are available:

• The Agilent 816x VXIplug&play Instrument Driver conforms
with the VXIplug&play standard.

• There is one exception as the Agilent 816x driver does not
have a soft front panel or a knowledge-based file.

• The Agilent 816x VXIplug&play Instrument Driver is built on
top of VISA, and uses the services provided.

• VISA supports GPIB and VXI protocols. The driver can be
used with any GPIB card for which the manufacturer has
provided a VISA DLL.

• The Agilent 816x VXIplug&play Instrument Driver includes
a Function Panel (.fp) file.

• The .fp file allows the driver to be used with visual
programming environments such as Agilent VEE,
LabWindows, and LabView.

• The Agilent 816x VXIplug&play Instrument Driver includes
a comprehensive on-line help file which complements the
instrument manual.

• The help file contains application programming examples, a
cross-reference between instrument commands and driver
functions, and detailed documentation of each function with
examples.

• The Agilent 816x VXIplug&play Instrument Driver includes
a Visual Basic (.BAS) file which contains the function calls in
Visual Basic syntax, and allows the driver functions to be
called from Visual Basic.

You should only use Visual Basic with this driver if you are
familiar with C/C++ function declarations. You must take
particular care when working with C/C++ pointers.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 107

Directory Structure

The setup program which installs the Agilent 816x instrument
driver creates the VXIPNP directory if it does not already exist.
The structures for the Windows NT and Windows 95 vxipnp
subdirectory tree are shown in Figure 9.

Figure 9 Windows 95 and Windows NT VXIPNP Directory Structure

In the directory example, hp816x is a directory containing the
instrument driver. There would be a directory for each
instrument driver.

108 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

Opening an Instrument Session

To control an instrument from a program, you must open a
communication path between the computer/controller and the
instrument. This path is known as an instrument session, and is
opened with the function

ViStatus hp816x_init(ViRsrc InstrDesc, ViBoolean id_query, ViBoolean reset,
ViPSession instrumentHandle);

Instruments are assigned a handle when the instrument session
is opened. The handle, which is a pointer to the instrument, is
the first parameter passed in all subsequent calls to driver
functions.

The parameters of the function hp816x_init include:

• ViRsrc InstrDesc: the address of the instrument

• ViBoolean id_query: a Boolean flag which indicates if in-system
verification should be performed.
Passing VI_TRUE (1) will perform an in-system verification;
passing VI_FALSE (0) will not.
If you set id_query to false, you can use the generic functions of
the instrument driver with other instruments.

• ViBoolean reset: a Boolean flag which indicates if the
instrument should be reset when it is opened.
Passing VI_TRUE (1) will perform a reset when the session is
opened; passing VI_FALSE (0) will not perform a reset,

• ViPSession instrumentHandle: a pointer to an instrument session.
InstrumentHandle is the handle which addresses the instrument,
and is the first parameter passed in all driver functions.

• Successful completion of this function returns VI_SUCCESS

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 109

Closing an Instrument Session

Sessions (instrumentHandle) opened with the hp816x_init()
function are closed with the function:

hp816x_close(ViSession instrumentHandle);

When no further communication with an instrument is
required, the session must be explicitly closed (hp816x_close()
function).

VISA does not remove sessions unless they are explicitly closed.
Closing the instrument session frees all data structures and
system resources allocated to that session.

110 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

VISA Data Types and Selected Constant Definitions

The driver functions use VISA data types. VISA data types are
identified by the Vi prefix in the data type name (for example,
ViInt16, ViUInt16, ViChar).

The file visatype.h contains a complete listing of the VISA data
types, function call casts and some of the common constants.

NOTE You can find a partial list of the type definitions and constant definitions for
the visatype.h in the Agilent 816x VXIplug&play Instrument Driver Online
Help.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 111

Error Handling

Events and errors within a instrument control program can be
detected by polling (querying) the instrument. Polling is used in
application development environments (ADEs) that do not
support asynchronous activities where callbacks can be used.

Programs can set up and use polling as shown below.

1 Declare a variable to contain the function completion code.

ViStatus errStatus;

Every driver function returns the completion code ViStatus.

If the function executes with no I/O errors, driver errors, or
instrument errors, ViStatus is 0 (VI_SUCCESS).

If an error occurs, ViStatus is a negative error code.

Warnings are positive error codes, and indicate the operation
succeeded but special conditions exist.

2 Enable automatic instrument error checking following each
function call.

hp816x_errorQueryDetect
(instrumentHandle, VI_TRUE);

When enabled, the driver queries the instrument for an error
condition before returning from the function.

If an error occurred, errStatus (Step 1) will contain a code
indicating that an error was detected
(hp816x_INSTR_ERROR_DETECTED).

3 Check for an error (or event) after each function.

errStatus = hp816x_cmd(instrumentHandle, "SENS1:POW:RANG");

check(instrumentHandle, errStatus);

After the function executes, errStatus contains the completion
code.

The completion code and instrument ID are passed to an
error checking routine. In the above statement, the routine is
called 'check'.

4 Create a routine to respond to the error or event. This
example queries whether an error has occured, checks if the
error is an instrument error and then checks if the error is a
driver error.
void check (ViSession instrumentHandle, ViStatus errStatus)

{

112 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

 /* variables for error code and message */

 ViInt32 inst_err;

 ViChar err_message[256];

 /* VI_SUCCESS is 0 and is defined in VISATYPE.h */

 if(VI_SUCCESS > errStatus)

 {

 /* hp816x_INSTR_ERROR_DETECTED defined in hp816x.h */

 if(hp816x_INSTR_ERROR_DETECTED == errStatus)

 {

 /* query the instrument for the error */

 hp816x_error_query(instrumentHandle, &inst_err, err_message);

 /* display the error */

 printf("Instrument Error : %ld, %s\n", inst_err, err_message);

 }

 else /* driver error */

 {

 /* get the driver error message */

 hp816x_error_message(instrumentHandle, errStatus, err_message);

 /* display the error */

 printf("Driver Error : %ld, %s\n", errStatus, err_message);

 }

 /* optionally reset the instrument, close the instrument handle */

 hp816x_reset(instrumentHandle);

 hp816x_close(instrumentHandle);

 exit(1);

 }

 return;

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 113

Introduction to Programming

Example Programs

See the Online Help and “VISA Programming Examples” on
page 85.

VISA-Specific Information

The following information is useful if you are using the driver
with a version of VISA.

Instrument Addresses

When you are using Agilent VXIplug&play instrument drivers,
you should enter the instrument addresses using only upper
case letters. This is to ensure maximum portability.

For example, use GPIB0::22 rather than gpib0::22.

Callbacks

Callbacks are not supported by this driver.

Development Environments

These sections contains suggestions as to how you can use
hp816x_32.dll within various application development
environments.

Microsoft Visual C++ 4.0 (or higher) and Borland C++ 4.5 (or
higher)

Please refer to your Microsoft Visual C++ or Borland C++
manuals for information on linking and calling DLLs.

Microsoft Visual Basic 4.0 (or higher)

Please refer to your Microsoft Visual Basic manual for
information on calling DLLs.

The BASIC include file is hp816x.bas. You can find this file in the
directory ~vxipnp\win95\include, where ~ is the directory in the
VXIPNP variable.

By default, ~ is equivalent to C:\. This means that the file is in C:\
vxipnp\win95\include.

114 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

You may also need to include the file visa.bas. visa.bas is provided
with your VISA DLL.

Agilent VEE 5.01 (or higher)

Your copy of Agilent VEE for Windows contains a document
titled Using VXIplug&play drivers with Agilent VEE for
Windows. This document contains the detailed information you
need for Agilent VEE applications.

LabWindows CVI/ (R) 4.0 (or higher)

The Agilent 816x VXIplug&play Instrument Driver is supplied
as a Dynamic Link Library (.DLL) file.

There are several advantages to using the .DLL form of the
driver, including those listed below:

• transportability across different computer platforms,

• a higher level of support for the compiled driver from Agilent
Technologies,

• a faster load time for your project.

LabWindows/CVI (R) will attempt by default to load the source
version of the instrument driver. To load the DLL, you must
include the file hp816x.fp in your project. hp816x.fp can be found in
the directory vxipnp\win95\hp816x.

Do not include hp816x.C in your project.

You must provide an include file for hp816x.H. You do this by
ensuring that the directory ~vxipnp\win95\include is added to the
include paths (CVI Project Option menu).
~ is the directory in the VXIPNP variable. By default, ~ is
equivalent to C:\. This means that the file is in C:\vxipnp\win95\
include.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 115

Online Information

The latest copy of this driver can be downloaded via:

http://www.agilent.com/comms/comp-test

If you do not have web access, use the version of hp816x.exe on
your OCT Support CD, or contact your Agilent Technologies
supplier.

116 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

Lambda Scan Applications

These functions combine multiple SCPI commands into a single,
functional operation. They are designed to allow quick and easy
access to common instrument command sequences.

These application functions allow you to perform a Multi Frame
Lambda Scan - a Lambda Logging operation where an Agilent
816xA/B Lightwave Measurement System with a Tunable Laser
module performs a wavelength sweep and the Tunable Laser
module is coordinated with the Agilent N7744A / N7745A
Multiport Power Meter. The instruments must be connected by
GPIB, LAN or USB. The Output Trigger Connector of the Agilent
816xA/B Lightwave Measurement System mainframe must be
connected to the Input Trigger Connector of the Multiport
Power Meter.

The following two functions apply to Multi Frame Lambda Scan
applications:

• The Set Lambda Scan Wavelength
(hp816x_set_LambdaScan_wavelength) function allows you
to use a different wavelength than 1550 nm during a Lambda
Scan operation. All Power Meters taking part in the Lambda
Scan operation will be set to the chosen wavelength.

• The Enable High Sweep Speed
(hp816x_enableHighSweepSpeed) function enables/disables
the highest available sweep speed (40 nanometers per
second) for Lambda Scan operations. The Lambda Scan
operation chooses the highest possible sweep speed for the
chosen step size.

• If you choose Enable, the highest sweep speed possible
will be used. This may lead to less accurate
measurements.

• If you choose Disable, the highest sweep speed will not be
used.

Equally Spaced Datapoints

A linear interpolation is optional for the Multi Frame Lambda
Scan Application.

The advantage of spacing all measurements equally is that
presenting results through use of a spreadsheet is greatly
simplified. The operation returns one wavelength array and a
power array for each power meter channel.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 117

The disadvantage of using equally spaced datapoints is that the
linear interpolation is analogous to the use of a low pass filter.
Figure 10 shows the original curve as measured directly by a
Power Meter and the interpolated curve.

Interpolation will always tend to produce a smoother curve by
rounding off any peaks in the curve.

Figure 10 Equally Spaced Datapoints

Original
Curve

Interpolated
Curve

118 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

How to Perform a Multi-Frame Lambda Scan Application

Figure 11 Multi Frame Lambda Scan Operation Setup

The Equally Spaced Datapoints Function

The Equally Spaced Datapoints
(hp816x_returnEquidistantData) function allows you to select
whether you the results will be equally spaced by performing a
linear interpolation on the wavelength point and power
measurement data, see“Equally Spaced Datapoints” on page 116
for more details.

Tunable Laser

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Power
Sensor

Output Trigger
Connector

Input Trigger
Connector

Input
Trigger

Connector

8164A or B

8166A or B

8163A or B

Power
Sensor

GPIB
Cable

Trigger
Cable

To Controller

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 119

This function is used because Lambda Scan functions make use
of Lambda Logging to log the exact wavelength that
measurements were triggered at. This results in Lambda Array
wavelength points that are not equally spaced.

Equally Spaced Datapoints is enabled as a default.

The Register Mainframe Function

Use the Register Mainframe (hp816x_registerMainframe)
function to register your mainframe as a participant in a Multi
Frame Lambda Scan operation. The mainframe must be
connected to the GPIB bus and have their Input Trigger
Connector connected to the Output Trigger Connector of the
Agilent 8164A/B Lightwave Measurement System mainframe
that the Tunable Laser module is installed in.

The Unregister Mainframe Function

Use the Unregister Mainframe function
(hp816x_unregisterMainframe) to remove a mainframe from a
Multi Frame Lambda Scan operation and clear the driver's
internal data structures.

If you use LabView 5.0 the following items should be noted:

• All multi frame functions are not re-entrant, if the driver is
running and initialized more than once, results may be
unpredictable.

• To avoid wrong results, call the Unregister Mainframe
function prior to the Initialize function (hp816x_init). This is
especially necessary during program debugging, if the Close
function (hp816x_close) is not called.

The Prepare Multi Frame Lambda Scan Function

The Prepare Multi Frame Lambda Scan
(hp816x_prepareMfLambdaScan) function prepares a Lambda
Scan operation for multiple Mainframes.

That is, it prepares an operation where a Agilent 8164A/B
Lightwave Measurement System with a back-loadable Tunable
Laser module and Power Meter Channels located in the

NOTE Lambda Logging is not available if your Tunable Laser module firmware
revision is lower than 2.0.

120 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

Multiport Power Meter. The function performs a wavelength
sweep where the Tunable Laser module and Power Sensors are
co-ordinated with each other.

The Prepare Multi Frame Lambda Scan
(hp816x_prepareMfLambdaScan) function must be called
before a Multi Frame Lambda Scan is executed. Use the return
values of this function (Number of Datapoints and Number of
Power Arrays) to allocate arrays for the Execute Multi Frame
Lambda Scan (hp816x_executeMfLambdaScan) function.

The function scans all mainframes to find back-loadable
Tunable Laser Sources. The function scans each mainframe in
the order that they were originally registered by the Register
Mainframe function (hp816x_registerMainframe). The first
back-loadable Tunable Laser Source found will perform the
sweep operation.

To obtain a higher precision, the Tunable Laser Source is set 1
nm before the Start Wavelength, this means, you have to choose
a Start Wavelength 1 nm greater than the minimum possible
wavelength. Also, the wavelength sweep is actually started 90
pm before the Start Wavelength and ends 90 pm after the Stop
Wavelength, this means, you have to choose a Stop Wavelength
90 pm less than the maximum possible wavelength.

Triggers coordinate the Tunable Laser module with all Power
Meters. The function sets for the lowest possible averaging time
available for the installed Power Meters and, then, sets the
highest possible sweep speed for the selected Tunable Laser
module sweep. All mainframes must be connected to the GPIB
bus and have their Input Trigger Connector connected to the
Output Trigger Connector of the Agilent 8164A/B Lightwave
Measurement System mainframe that the Tunable Laser module
is installed in.

If one of the following circumstances occurs, the "parameter
mismatch" error will be returned:

1 If one Power Meter is out of the specification at 1550 nm, the
error "powermeter wavelength does not span 1550nm" will be
returned. For example, the HP 81530A Power Sensor and the
HP 81520A Optical Head are out of specification at 1550 nm.
Remove the Power Meter that is out of specification at 1550
nm from the mainframe.

2 If the Step Size is too small and results in a trigger frequency
that is to high for the installed Power Meters, the error "could
not calculate a sweep speed!" will be returned. Increase the
Step Size.

The Agilent 816x VXIplug&play Instrument Driver 6

Multi-Port Power Meter Programming Guide 121

3 If the chosen wavelength range is too large and Step Size is
too small, the error "too many datapoints to log!" will be
returned. In this case, reduce the wavelength range and/or
increase the Step Size.

The Get MF Lambda Scan Parameters Function

The Get MF Lambda Scan Parameters
(hp816x_getMFLambdaScanParameters_Q) function returns all
parameters that the Prepare Multi Frame Lambda Scan
(hp816x_prepareMfLambdaScan) function adjusts or
automatically calculates.

The Execute Multi Frame Lambda Scan Function

The Execute Multi Frame Lambda Scan
(hp816x_executeMfLambdaScan) function runs a Lambda Scan
operation and returns an array that contains the wavelength
values at which power measurements are made.

That is, it executes an operation where a Agilent 8164A/B
Lightwave Measurement System with a back-loadable Tunable
Laser module and a Multiport Power Meter, performs a
wavelength sweep where the Tunable Laser module and Power
Sensors are coordinated with each other.

Use the values returned from the Prepare Multi Frame Lambda
Scan (hp816x_prepareMfLambdaScan) function to set the
parameters of the Execute Multi Frame Lambda Scan
(hp816x_executeMfLambdaScan) function.

The Get Lambda Scan Result Function

The Get Lambda Scan Result (hp816x_getLambdaScanResult)
function returns for a given Power Meter channel a power value
array and a wavelength value array.

These arrays contains the results of the last Multi Frame
Lambda Scan operation.

The Get Number of PWM Channels Function

The Get Number of PWM Channels
(hp816x_getNoOfRegPWMChannnels_Q) function returns the
number of Power Meter channels in a test setup.

Only Power Meters whose mainframe was registered using the
Register Mainframe (hp816x_registerMainframe) function are
counted.

122 Multi-Port Power Meter Programming Guide

6 The Agilent 816x VXIplug&play Instrument Driver

The Get Channel Location Function

The Get Channel Location function
(hp816x_getChannelLocation_Q) returns the location of the
chosen Power Meter channel as used in a Multi Frame Lambda
Scan operation.

The maximum number of channels that may be specified is
1000.

123

Agilent N7744A / N7745A Multiport Power Meter
Programming Guide

Agilent Technologies

7
Error Codes

This chapter gives information about error codes used with the Agilent
N7744A / N7745A Multiport Power Meter.

GPIB Error Strings 124

124 Multi-Port Power Meter Programming Guide

7 Error Codes

GPIB Error Strings

Error strings in the range -100 to -183 are defined by the SCPI
standard, downloadable from:
http://www.scpiconsortium.org/scpistandard.htm

String descriptions taken from this standard (VERSION 1999.0
May, 1999), whether in whole or in part, are enclosed by [].

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

Note: Error strings in the range -100 to -183 are defined by the SCPI standard, downloadable from:
http://www.scpiconsortium.org/scpistandard.htm
String descriptions taken from this standard (VERSION 1999.0 May, 1999), whether in whole or in part,
are enclosed by [] in this table.

-100 to -199 Command Errors

Standard -100 "Command Error"
[This is the generic syntax error used when a more specific error cannot be detected.
This code indicates only that a Command Error as defined in IEEE 488.2,11.5.1.1.4 has
occurred.]

Standard -101 "Invalid character"
[A syntactic element contains a character which is invalid for that type; for example, a
header containing an ampersand, SETUP&. This error might be used in place of error
-114 and perhaps some others.]

Standard -102 "Syntax error"
[An unrecognized command or data type was encountered; for example, a string was
received when the device does not accept strings.]

Standard -103 "Invalid separator"
[The parser was expecting a separator and encountered an illegal character; for example,
the semicolon was omitted after a program message unit]

Standard -104 "Data type error"
[The parser recognized a data element different than one allowed; for example,numeric
or string data was expected but block data was encountered.]

Standard -105 "GET not allowed"
[A Group Execute Trigger was received within a program message (see IEEE488.2, 7.7).]

Standard -108 "Parameter not allowed"
[More parameters were received than expected for the header]

Standard -109 "Missing parameter"
[Fewer parameters were recieved than required for the header]

Standard -112 "Program mnemonic too long"
[The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1).]

Error Codes 7

Multi-Port Power Meter Programming Guide 125

Standard -113 "Undefined header"
[The header is syntactically correct, but it is undefined for this specific device; for
example, *XYZ is not defined for any device.]

Standard -120 "Numeric data error"
[This error, as well as errors -121 through -129, are generated when parsing a data
element which appears to be numeric, including the nondecimal numeric types. This
error message is used if the device cannot detect a more specific error.]

Standard -121 "Invalid character in number"
[An invalid character for the data type being parsed was encountered; for example, an
alpha in a decimal numeric]

Standard -123 "Exponent too large"
[The magnitude of the exponent was larger than 32000 (see IEEE 488.2,7.7.2.4.1).]

Standard -124 "Too many digits"
[The mantissa of a decimal numeric data element contained more than 255 digits
excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).]

Standard -128 "Numeric data not allowed"
[A legal numeric data element was received, but the device does not accept one in this
position for the header.]

Standard -131 "Invalid suffix"
[The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2, or thesuffix is
inappropriate for this device.]

Standard -134 “Suffix too long”
[The suffix contained more than 12 characters (see IEEE 488.2, 7.7.3.4).]

Standard -138 “Suffix not allowed”
[A suffix was encountered after a numeric element which does not allow suffixes.]

Standard -141 “Invalid character data”
[Either the character data element contains an invalid character or the particular element
received is not valid for the header.]

Standard -148 “Character data not allowed”
[A legal character data element was encountered where prohibited by the device.]

Standard -150 “String data error”
[This error, as well as errors -151 through -159, are generated when parsing a string data
element. This error message is used when the device cannot detect a more specific
error.]

Standard -151 “Invalid string data”
[A string data element was expected, but was invalid for some reason (see IEEE 488.2,
7.7.5.2); for example, an END message was received before the terminal quote character.]

Standard -158 “String data not allowed”
[A string data element was encountered but was not allowed by the device at this point
in parsing.]

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

126 Multi-Port Power Meter Programming Guide

7 Error Codes

Standard -161 “Invalid block data”
[A block data element was expected, but was invalid for some reason (see IEEE 488.2,
7.7.6.2); for example, an END message was received before the length was satisfied.]

Standard -168 “Block data not allowed”
[A legal block data element was encountered but was not allowed by the device at this
point in parsing.]

Standard -170 “Expression error”
[This error, as well as errors -171 through -179, are generated when parsing an
expression data element. This particular error message is used when the device cannot
detect a more specific error.]

Standard -171 “Invalid expression”
[The expression data element was invalid (see IEEE 488.2, 7.7.7.2); for example,
unmatched parentheses or an illegal character.]

Standard -178 “Expression data not allowed”
[A legal expression data was encountered but was not allowed by the device at this point
in parsing.]

Standard -181 “Invalid outside macro definition”
[Indicates that a macro parameter placeholder ($<number) was encountered outside of a
macro definition.]

Standard -183 “Invalid inside macro definition”
[Indicates that the program message unit sequence, sent with a *DDT or *DMC
command, is syntactically invalid (see IEEE 488.2, 10.7.6.3).]

New -185 “Subop out of range”
Description:
Suboperations are parameters that are passed to refine the destination of a command.
They are used to address slots, channels, laser selections and GPIB/SCPI register levels.
This error is generated if the parameter is not valid in the current context or system
configuration.
Example:
This error occurs if the user queries the status of a summary register and passes an
invalid status level (also see "Status for 816x" on page 28 programmer's guide).
Note:
Incorrect slots and channels addresses are handled by error code -301

-200 to -299 Execution Errors

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

Error Codes 7

Multi-Port Power Meter Programming Guide 127

Standard -200 “Execution error (StatExecError)"
Description:
This error occurs when the current function, instrument or module state (or status)
prevents the execution of a command. This is a generic error which can for a number of
reasons.
Example:
When a powermeter has finished a logging application and data is available, the user is
not able to reconfigure the logging application parameters. First, the user must stop the
logging application.

New -201 "Please be patient - GPIB currently locked out"
Description:
Some operations block the complete system. Since no sensible measurements are
possible while this is true, the GPIB is locked out.
Example:
When ARA, Lambda zeroing or zeroing is executing on a TLS module, the GPIB is not
accessible.

New -205 “Powermeter not running (StatMeterNotRunning)"
Description:
Some command and actions may stop the data aquisition unit of a powermeter. If a
command fetches data, there may be no measurement values and this error is generated.
Please check module state and repeat operation.

Old -211 “Trigger ignored”
Description:
A trigger has been detected but ignored because of timing contraints. (For Example:
average time to large).

Old -212 “Arm ignored”
Description:
The user can set the automatic re-arming option for input and output trigger events (see
“Triggering - The TRIGger Subsystem" on page 82). When this error occurs, the device
ignores the setting because the current module status does not allow the change of
trigger settings.

Old -213 “Init ignored”
Description:
The INIT:IMM command (page 64) initiates a trigger and completes a full measurement
cycle. The continuous measurement must be DISABLED. This error code is generated if
the powermeter is still in cont. measurement mode.

Old -220 "Parameter error (StatParmError)”
Description:
The user has passed a parameter that cannot be changed in this way. The device cannot
detect one of the following more specific errors:

Old -220 -220, "Parameter error (StatParmOutOfRange)"
Description:
The user has passed a parameter that exceeds the valid range for this parameter.

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

128 Multi-Port Power Meter Programming Guide

7 Error Codes

Old -220 "Parameter error (StatParmIllegalVal)"
Description:
The user has passed a parameter that does not match a value in a list of possible values.

Old -221 "Settings conflict (StatParmInconsistent)"
Description:
The user has passed a parameter that conflicts with other already configured
parameters.
Example:
There are constrains for TLS sweep parameters: this error is generated when lambda
step size exceeds the difference between start and stop wavelength.
If error -221 is returned after you try to start a wavelength sweep, one of the following
cases of sweep parameter inconsistency has occurred:
Continuous Sweep mode AND l Start is less than l Stop.
Continuous Sweep mode AND Sweep Time is too short. Adjust Sweep Speed, l Start, or l
Stop.
Continuous Sweep mode AND Sweep Time is too long. Adjust Sweep Speed, l Start, or l
Stop.
Continuous Sweep mode AND Trigger Frequency is too high. Adjust Step Size. Trigger
Frequency is the Sweep Speed divided by the Step Size.
Stepped Sweep mode AND Lambda Logging Enabled.
Continuous Sweep mode AND Lambda Logging Enabled AND Output trigger mode not
set to STFinished (Step finished).
Continuous Sweep mode AND Lambda Logging is Enabled AND Modulation Source is
not set to OFF.
Continuous Sweep mode AND Lambda Logging is Enabled AND Sweep Cycles is not set
to 1.
Continuous Sweep mode AND Coherence Control is Enabled.

Standard -222 "Data out of range (StatParmTooLarge)"
Description:
The user has passed a continuous parameter that is too large.
Example:
Wavelength 1800nm when maximum wavelength is 1700nm.

Standard -222 "Data out of range (StatParmTooSmall)"
Description:
The user has passed a continuous parameter that is too small.
Example:
Wavelength 700nm when minimum wavelength is 800nm.

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

Error Codes 7

Multi-Port Power Meter Programming Guide 129

Standard -223 “Too much data”
Description:
A function returns more data or the user requests more data than the application is able
to handle.
Example:
A tunable laser source produces more data when lambda values of a sweep are stored
than the N7744A instrument is able to handle. Use the new SENSE:FUNC:RES:BLOCK?
command to split the data aquisition into multiple parts.

Standard -224 “Illegal parameter value”
[Used where exact value, from a list of possibles, was expected.]

New -225 "Out of memory"
Description:
The request application or function cannot be executed because the instrument runs out
of memory.

Old -231 "Data questionable (StatValNYetAcc)"
Description:
The data that is retured is not accurate or reliable. The user should repeat the operation.
The reason for this error is unspecific.
Example:
A powermeter configured a long average time has not completed its current
measurement cycle when the user queries the current power.

Old -231 "Data questionable (StatRangeTooLow)"
Description:
As -231 (StatValNYetAcc) but for a more specific reason: The powermeter readout data is
not reliable because the currently set (manual) range does not correspond with the input
power.

Old -261 "Math error in expression (StatUnitCalculationError)"
Description:
This may occur when the user attempts to transform data in a way that is currently not
possible.
Example:
When a powermeter is measuring very small powe values in dBm (such as noise power),
negative power values in Watt may also be present (such as when the powermeter
calibration wavelength does not correspond to the wavelength of input signal). The
instrument cannot transform negative Watt values to dBm because the logarithm of a
negative value is not defined.

Standard -272 “Macro execution error”
[Indicates that a syntactically legal macro program data sequence could not beexecuted
due to some error in the macro definition (see IEEE 488.2, 10.7.6.3.)]

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

130 Multi-Port Power Meter Programming Guide

7 Error Codes

Standard -273 “Illegal macro label”
[Indicates that the macro label defined in the *DMC command was a legal string syntax,
but could not be accepted by the device (see IEEE 488.2, 10.7.3 and 10.7.6.2); for example,
the label was too long, the same as a common command header, or contained invalid
header syntax.]

Standard -276 “Macro recursion error”
[Indicates that a syntactically legal macro program data sequence could not be executed
because the device found it to be recursive (see IEEE 488.2, 10.7.6.6).]

Standard -277 “Macro redefinition not allowed”
[Indicates that a syntactically legal macro label in the *DMC command could not be
executed because the macro label was already defined (see IEEE 488.2,10.7.6.4).]

Standard -278 “Macro header not found”
[Indicates that a syntactically legal macro label in the *GMC? query could not be
executed because the header was not previously defined.]

Old -284 "Function currently running (StatModuleBusy)"
Description:
This error is generated when a function is currently running on a module so that it cannot
process another commands.
Example:
When a powermeter is running a logging application, you are not able to configure the
logging application parameters (also see -200).

Old -286 "No function currently running"
Description:
This error is generated when a user tries to execute a command which requires a
particular set of data that is not available.
Example:
Application data is necessary to execute SENSE:FUNC:RES?. If no suitable function has
completed, there is no data and this error is generated. (also see -200).

New -290 “Application currently running - no GPIB support”
Description:
The instrument has built-in applications that have no GPIB support (such as
Logging,Stability,PACT).
Example
When an application is running error -290 will be returned if any command other than one
the following is sent:
*WAI
*OPC?
:SPECial:REBoot
:SYSTem:ERRor?
:SYSTem:VERSion?

-300 to -399 or between 1 and 32767 Device-Specific Errors (Module)

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

Error Codes 7

Multi-Port Power Meter Programming Guide 131

Old -300 “Internal error (StatVals Lost)”
“Internal error (StatInternalError)”
Description
These are generic device-dependent errors used when the instrument cannot detect
more specific errors.

New -301 "Module doesn't support this command (StatCmdUnknown)"
Description:
The addressed module does not support the SCPI command.
Example:
When a command from the SENSe SCPI tree is sent to a fixed or tunable laser source.

New -302 "Internal timeout error (StatTimedOut)"
Description:
A command has not returned in the expected time.

New -303 "Module slot empty or slot / channel invalid"
Description:
The user has send a command to an empty slot.

New -304 "Command was aborted (StatAborted)"
Description:
The command has been interrupted by another event.

New -305 "Internal messaging error (StatCmdError)"
"Internal messaging error (StatCmdNotAllowed)"
"Internal messaging error (StatWrongLength)"
"Internal messaging error (StatWrongReceiver)"
"Internal messaging error (StatBufAllocError)"
"Internal messaging error (StatDPRamFull)"; }
"Internal messaging error (StatSemError)"
Description:
An error has occured in the instrument communication system. Please report this error
with a description of the circumstances that generated the error and the configuration of
the system.

New -306 "Channel doesn't support this command (StatCmdUnknownForSlave)"
Description:
Slave channels have limited functionality. The module supports this command, but the
command must be sent to the master channel.

New -307 "Channel without head connection (StatHeadless)"
Description:
The channel supports this command, but it cannot be executed because the optical
measurement head is not plugged into the interface module.

Standard -310 “System error”
[Indicates that some error, termed “system error” by the device, has occurred. This code
is device-dependent.]

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

132 Multi-Port Power Meter Programming Guide

7 Error Codes

Standard -321 “Out of memory”
[An internal operation needed more memory than was available.]

New -322 "Flash programming error (StatFlashEraseFailed)"
"Flash programming error (StatFlashWriteFailed)"
"Flash programming error (StatFlashDataCntError)"
"Flash programming error (StatFlashDPAlgoFailed)"
Description:
An error has occured in a module. Please report this error with a description of the
circumstances that generated the error and the configuration of the system.

New -323 "Flash programming error (StatUserCalTable Empty)"
It is not possible to activate the offset (l) functionality when the offset table is empty
"Flash programming error (StatUserCalTable Full)"
The offset (l) table is full and no more ? can be stored
"Flash programming error (StatUserCalActive)"
It is not possible to program the offset (l) table when the offset (l) feature is activated.
Deactivate first.

Old -330 “Self-test failed”
Description:
You have started the self test, but the module has detected an error while executing it

New -340 "Printing error (StatPrintError)"
Description:
An unspecified problem occurred while communicating with the printer.

New -341 "Printing error - paper out (StatPaperOut)"
Description:
The instrument cannot print because there is no paper in the connected printer.

New -342 "Printing error - offline (StatOffline)"
Description:
The instrument cannot print because the connected printer is offline.

Standard -350 “Queue overflow”
[A specific code entered into the queue in lieu of the code that caused the error. This
code indicates that there is no room in the queue and an error occurred but was not
recorded.]

-400 to -499 Query Errors

Standard -400 “Query error”
[This is the generic query error for devices that cannot detect more specific errors. This
code indicates only that a Query Error as defined in IEEE 488.2, 11.5.1.1.7 and 6.3 has
occurred.]

Standard -410 “Query INTERRUPTED”
[Indicates that a condition causing an INTERRUPTED Query error occurred (see IEEE
488.2, 6.3.2.3); for example, a query followed by DAB or GET before a response was
completely sent.]

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

Error Codes 7

Multi-Port Power Meter Programming Guide 133

Standard -420 “Query UNTERMINATED”
[Indicates that a condition causing an UNTERMINATED Query error occurred (see IEEE
488.2, 6.3.2.2); for example, the device was addressed to talk and an incomplete program
message was received.]

Standard -430 “Query DEADLOCKED”
[Indicates that a condition causing an DEADLOCKED Query error occurred (see IEEE
488.2, 6.3.1.7); for example, both input buffer and output buffer are full and the device
cannot continue.]

Standard -440 “Query UNTERMINATED after indef resp”
[Indicates that a query was received in the same program message after an query
requesting an indefinite response was executed (see IEEE 488.2, 6.5.7.5).]

Table 1 Overview for Supported Strings

New/Old/Standard Error

Number String

Table 2 Overview for Unsupported Strings

New/Old/Standard Error

Number String

Old all positive errors

Old -110 “Command header error”

Old -111 “Header seperator error”

Old -114 “Header suffix out of range”

Old -130 “Suffix error”

Old -140 “Character data error”

Old -144 “Character data too long”

Old -160 “Block data error”

Old -201 “Invalid while in local”

Old -202 “Settings lost due to ???”

Old -210 “Trigger error”

Old -214 “Trigger deadlock”

Old -215 “Arm deadlock”

Old -230 “Data corrupt or stale”

Old -240 “Hardware error”

Old -241 “Hardware missing”

Old -260 “Expression error”

Old -280 “Program error”

Old -281 “Cannot create program”

Old -282 “Illegal program name”

Old -283 “Illegal variable name”

Old -285 “Program syntax error”

134 Multi-Port Power Meter Programming Guide

7 Error Codes

Old -286 “Program runtime error”

Old -311 “Memory error” [checksum or parity]

Old -312 “Protect user data memory lost”

Old -313 “Calibration memory lost”

Old -314 “Save/Recall Memory lost”

Old -315 “Configuration memory lost”

Table 2 Overview for Unsupported Strings

New/Old/Standard Error

Number String

Multi-Port Power Meter Programming Guide 135

Index

A

Agilent VEE, 100
AutoIP, 50

B

Binary block, 16

C

Channel Numbers, 16
Command summary, 28
Common commands, 18
Continuous measurement, 64, 65

D

Data Types, 16
default gateway, 52, 54
DHCP, 50
DNS, 50
domain name, 51, 53

E

Error handling, 111
Error strings

GPIB, 124
Ethernet parameters, 52
Event register

operation enable, 41, 43
questionable enable, 45, 46

Event Status Enable, 35
Event Status Register, 35

F

FETCh subsystem, 63

G

GPIB Interface, 8

H

host name, 51, 52

I

Identification, 35
IEEE-Common Commands, 34
INITiate subsystem, 64
Input queue, 12
Installed options, 37
Instrument addresses, 113
Instrument Behaviour Settings, 47
Instrument driver, 106
Instrument driver installation, 96
Interface

behaviour settings, 47
IP address, 51, 53

L

LabView, 102
LabWindows, 105
Lambda scan

get result function, 121
mult-frame, 119

Lambda scans, 116

M

MAC address, 50
Measurement

start, 64
Measurement Functions, 63
Message queues, 12

O

Operation Complete, 36
Operation enable, 41, 43
Options, 37
Output queue, 12

P

Power measurement
example of FETCh and READ usage, 88

Power Meter
continuous measurement, 64
start measurement, 64

Power meter
configure all, 65
continuous measurement, 65
current value, 66
read all, 65

Q

Questionable enable, 45, 46

R

READ subsystem, 66
Register

Operational Slot Status, 24
Questionable slot status, 24
Standard Event Status, 23
Status byte, 23
Status summary, 23

register mainframe, 119
Reset, 37
Root layer commands, 60

S

SCPI revision, 49
Self-test, 38
SENSe subsystem, 66
settings, 56
Slot Numbers, 16
SLOT subsystem, 60
Specific Command Summary, 28
Start

measurement, 64
power meter measurement, 64

Status Byte, 37
Status Command Summary, 25
Status Information, 18
Status Reporting, 40
STATus subsystem, 40
subnet mask, 51, 53
Subsystem

FETCh, 63
INITiate, 64
READ, 66
SENSe, 66
SLOT, 60
STATus, 40
SYSTem, 47
TRIGger, 82

SYSTem subsystem, 47

T

Test, 38
Trace Data Access, 49
TRIGger Subsystem, 82

136 Multi-Port Power Meter Programming Guide

Index

U

Units, 15
unregister mainframe, 119

V

Visa calls
How to use, 86

VISA data types, 110
Visual programming environment, 100
Vxipnp directory, 107

W

Wait, 39

© Agilent Technologies Deutschland
GmbH 2009

Printed in Germany
Second edition, February 2009

N7744-90C01

www.agilent.com

Agilent Technologies

	Contents
	Introduction to Programming
	GPIB Interface
	Setting the GPIB Address

	Using the Web-Enabled Instrument Interface
	Browser Configuration

	Message Queues
	How the Input Queue Works
	Clearing the Input Queue

	The Output Queue
	The Error Queue

	Programming and Syntax Diagram Conventions
	Short Form and Long Form
	Command and Query Syntax
	Units
	Data Types
	Slot and Channel Numbers

	Common Commands
	Common Command Summary
	Common Status Information

	The Status Model
	Status Registers
	Status System
	Annotations
	Status Byte Register
	Standard Event Status Register
	Operation/Questionable Status Summary
	Operation/Questionable Status Summary Register
	Operation/Questionable Slot Status
	Operation Slot Status Register
	Questionable Slot Status Register

	Status Command Summary
	Other Commands

	Specific Commands
	Specific Command Summary

	Instrument Setup and Status
	IEEE-Common Commands
	Status Reporting - The STATus Subsystem
	Interface/Instrument Behaviour Settings - The SYSTem Subsystem
	:SYSTem:COMMunicate:ETHernet subtree
	Some notes on DHCP/AutoIP/DNS
	MAC address
	Automatically set Ethernet parameters
	Explicitly set Ethernet parameters
	Changing the Ethernet parameters

	Handling Measurement Settings - The :CONFigure:MEASurement:SETTing subtree

	Measurement Operations & Settings
	Root Layer Command
	Measurement Functions - The FETCh, INITiate, READ and SENSe Subsystems
	Using data buffers for simultaneous measurement and upload
	Example: Programming Streaming Data

	Triggering - The TRIGger Subsystem

	VISA Programming Examples
	How to Use VISA Calls
	How to Measure Power using FETCh and READ
	How to Log Results

	The Agilent 816x VXIplug&play Instrument Driver
	Installing the Agilent 816x Instrument Driver
	Using Visual Programming Environments
	Getting Started with Agilent VEE
	GPIB Interfacing in Agilent VEE

	Getting Started with LabView
	Getting Started with LabWindows

	Features of the Agilent 816x Instrument Driver
	Directory Structure
	Opening an Instrument Session
	Closing an Instrument Session
	VISA Data Types and Selected Constant Definitions
	Error Handling
	Introduction to Programming
	Example Programs
	VISA-Specific Information
	Instrument Addresses
	Callbacks

	Development Environments
	Microsoft Visual C++ 4.0 (or higher) and Borland C++ 4.5 (or higher)
	Microsoft Visual Basic 4.0 (or higher)
	Agilent VEE 5.01 (or higher)
	LabWindows CVI/ (R) 4.0 (or higher)

	Online Information
	Lambda Scan Applications
	Equally Spaced Datapoints
	How to Perform a Multi-Frame Lambda Scan Application
	The Equally Spaced Datapoints Function
	The Register Mainframe Function
	The Unregister Mainframe Function
	The Prepare Multi Frame Lambda Scan Function
	The Get MF Lambda Scan Parameters Function
	The Execute Multi Frame Lambda Scan Function
	The Get Lambda Scan Result Function
	The Get Number of PWM Channels Function
	The Get Channel Location Function

	Error Codes
	GPIB Error Strings

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

